Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T06:35:19.875Z Has data issue: false hasContentIssue false

Surface quality evaluation of hot deformed aluminum

Published online by Cambridge University Press:  22 July 2016

L.A. Espinosa Zúñiga*
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, UANL, AP-149F, CP-66451, Cd. Universitaria, N.L. México.
F.A. Pérez González
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, UANL, AP-149F, CP-66451, Cd. Universitaria, N.L. México.
O. Zapata
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, UANL, AP-149F, CP-66451, Cd. Universitaria, N.L. México.
N.F. Garza Montes de Oca
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, UANL, AP-149F, CP-66451, Cd. Universitaria, N.L. México.
S. Haro
Affiliation:
Unidad Académica de Ingeniería, Universidad Autónoma de Zacatecas, Av. López Velarde No. 801, Centro, C.P. 98000, Zacatecas, Zac. México.
Get access

Abstract

The surface quality of a heat treatable Al-Si-Mg alloy by means compression tests at 450°C was evaluated. Samples were obtained from an ingot with unidirectional solidification in order to obtain a microstructural gradient influenced by the cooling and solidification rate. The samples were heat treated by homogenization at 520°C for 4 hours prior to deformation by compression. Inverted optical and scanning electron microscopes were used to assess the surface damage of deformed samples.

Analysis of deformed surface indicates a greater influence of microstructural refinement on hardening rate. It was found that the samples solidified at high cooling rates showed no defects, but at low cooling rates produced growth of grain size and intermetallic phases and thereby the high incidence of cracks in the surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aluminum and Aluminum Alloys, ASM Specialty Handbook, ASM International, 2002.Google Scholar
Ascencio Lozano, J., Suárez Peña Laughlin, B., Quantitative analysis and morphological characterization of 6063 alloy, magazine metallurgy, 48 (2012) 199212.Google Scholar
Aliravci, J.E. Gruzleski, M.Ö. Pekgüleryüz. Solidification Processing. C.A. Sheffield, England Proc. 4th Decennial Int. Conf, 1997 Google Scholar
Tanihata, H., Matsuda, T. S., Ikeno, S.. Effect of casting and homogenizing treatment conditions on the formation of Al-Fe-Si intermetallic compounds in 6063 Al-Mg-Si alloys. Journal of Materials Science, 34 (1999) 12051210.CrossRefGoogle Scholar
Cavazos, J. L., Colás, R., Quench sensitivity of a heat treatable aluminum alloy, Materials Science and Engineering A363 (2003) 171178.CrossRefGoogle Scholar
Choi, S.W., Kim, Y.M., Lee, K.M., Cho, H.S., Hong, S.K., The effects of cooling rate and heat treatment on mechanical and thermal characteristics of Al–Si–Cu–Mg foundry alloys, J. Alloys Comp. 617 (2014) 654659.CrossRefGoogle Scholar
Gorny, A., Evolution of Fe based intermetallic phases in Al–Si hypoeutectic casting alloys: Influence of the Si and Fe concentrations, and solidification rate, Journal of Alloys and Compounds, 577 (2013) 103124.CrossRefGoogle Scholar
Aliravci, C.A., Gruzleski y, J.E. Pekgüleryüz, M.Ö., Proc. 4th Decennial Int. Conf. Solidification Processing, Sheffield, England (1997), 550.Google Scholar
Sha, G., O’Reilly, K., Cantor, B., Worth y, J. Hamerton, R., Mater. Sci. Eng. A 304 (2001) 612616.CrossRefGoogle Scholar
Mrówka, G., Nowotnik, Influence of chemical composition variation and heat treatment on microstructure and mechanical properties of 6xxx alloys, Archives of materials science and engineering, 46 (2010) 98107.Google Scholar
Li, H.Y., Zeng, C.T., Han, M.S., Liu, J.J., Lu, X.C., Time−temperature−property curves for quench sensitivity of 6063 aluminum alloy, Trans. Nonferrous Met. 23 (2013) 3845.CrossRefGoogle Scholar
Hannard, F., Pardoen, T., Maire, E., Characterization and micromechanical modelling of microstructural heterogeneity effects on ductile fracture of 6xxx aluminum alloys, Acta Materialia, 103 (2016) 558572.CrossRefGoogle Scholar
Kuijpers, N.C.W., Vermolen, F.J., The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements, Materials Science and Engineering, A 394 (2005) 919.CrossRefGoogle Scholar
Verma, A., Kumar, S., Influence of cooling rate on the Fe intermetallic formation in an AA6063 Al alloy, Journal of Alloys and Compounds, 555 (2013) 274282.CrossRefGoogle Scholar