Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:34:07.056Z Has data issue: false hasContentIssue false

Study of the Dynamic Behavior of Dislocations During the Melt Growth Process of Tin Crystal by Synchrotron X-Ray Topography

Published online by Cambridge University Press:  25 February 2011

Osamu Nittono
Affiliation:
Tokyo Institute of Technology, Dept. of Metallurgy, Tokyo 152, Japan.
Taro Ogawa
Affiliation:
Tokyo Institute of Technology, Dept. of Metallurgy, Tokyo 152, Japan.
Sheng Kai Gong
Affiliation:
Tokyo Institute of Technology, Dept. of Metallurgy, Tokyo 152, Japan.
Sigemaro Nagakura
Affiliation:
Tokyo Institute of Technology, Dept. of Metallurgy, Tokyo 152, Japan.
Get access

Abstract

The dynamic behavior of the melt growth process of Sn with low dislocation density has been investigated by means of synchrotron Laue topography using an X-ray sensing high resolution camera tube. No defect images are observed at the point where the melting begins. No dislocations are generated during the temperature rise to the melting point,although the dislocation configuration changes slightly. Most of dislocations which are contacting the melting interface do not propagate into a newly grown crystal part and the homogeneous solidification results in a nearly perfect crystal.Dislocations and slip bands are generated from a part where the solidification is completed. It was found that the growing interface appears atomically rough and extends through a considerably large number of layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Jackson, K.A.:Liquid Metals and Solidification,(American Society for Metals, Cleveland,1958) p.174.Google Scholar
[2] Jackson, K.A., Uhlmann, D.R. and Hunt, J.D.: J. Crystal Growth 1(1967) 1.10.1016/0022-0248(67)90003-6Google Scholar
[3] Cahn, J.W.: Acta Met., 8(1960) 554.10.1016/0001-6160(60)90110-3CrossRefGoogle Scholar
[4] Cahn, J.W., Hillig, W.B. and Sears, G.W.: Acta Met., 12(1964) 1421.10.1016/0001-6160(64)90130-0CrossRefGoogle Scholar
[5] Chikawa, J.: J. Crystal Growth 24/25 (1974) 61.10.1016/0022-0248(74)90281-4CrossRefGoogle Scholar
[6] Chikawa, J.: J. Crystal Growth 39(1977) 328.10.1016/0022-0248(77)90282-2Google Scholar
[7] Chikawa, J. and Shirai, S.: Nippon Kessho Seicho Gakkai-shi 4(1977) 2.Google Scholar
[8] Kobayashi, T. and Imura, T.: Jpn J. Appl. Phys., 23(1984) L632. L581.10.1143/JJAP.23.L632Google Scholar
[9] Nittono, O., Ogawa, T., Gong, S.K. and Nagakura, S.: Jpn J. Appl. Phys. 23(1984)10.1143/JJAP.23.L581Google Scholar
[10] Nittono, O., Hyugaji, M. and Nagakura, S.: Jpn J. Appl. Phys., 20(1981) 1329.10.1143/JJAP.20.1329CrossRefGoogle Scholar
[11] Hyugaji, M., Ogawa, T. and Nittono, O. :Trans. JIM., 25(1984) 467.10.2320/matertrans1960.25.467Google Scholar
[12] Suzuki, S., Ando, M.,Hayakawa, K.. Nittono, O.,Hashizume, H.,Kishino, S. and Kohra, K.: Nucl. Instrum. & Methods : in the press.Google Scholar
[13] Chikawa, J.,Sato, F.,Kawamura, T.,Yamashita, T. & Goto, N.:Nippon Kessho Gakkai-shi 24 (1982) 295.Google Scholar
[14] Lee, J.A. and Raynor, G.V. :Proc.Phys.Soc.London B67(1954) 737.10.1088/0370-1301/67/10/301Google Scholar
[15] .Cizek, T.F:Semiconductor SiZicon,EdsR.R., Haderecht & E.L., Kern, (Electrochemical Society, Inc. Princeton, N.J. 1969) p.156.Google Scholar
[16] Kobayashi, K.F.,Kumikawa, M. & Shingu, P.H.: J. Crystal Growth 67(1984) 85.10.1016/0022-0248(84)90134-9CrossRefGoogle Scholar