Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T08:18:32.529Z Has data issue: false hasContentIssue false

Studies of Interface States of Silicon Metal-Oxide-Semiconductor Devices by Dynamic Conductance and Noise Measurements and Effects of Bias-Temperature Stresses

Published online by Cambridge University Press:  15 February 2011

K. L. Ngai
Affiliation:
Naval Research Laboratory, Washington, DC 20375 (U.S.A.)
S. T. Liu
Affiliation:
Honeywell Corporation, Technology Center, Bloomington, MN 55420 (U.S.A.)
Get access

Abstract

Dynamic conductance measurements in metal-oxide-semiconductor (MOS) capacitors and the effects of bias-temperature stresses are considered together with noise measurements to determine the origin of 1/f noise in an MOS field effect transistor (MOSFET) operated either under subthreshold or above threshold conditions. The 1/f noise in a subthreshold MOSFET is shown to be due to the dispersion of dielectric loss of the interfacial oxide. The source of 1/f noise in the inversion regime is less certain. Both the number fluctuation model and the mobility fluctuation model are consistent with the data of the bias-temperature treatment effect on 1/f noise reported by Vandamme and Dik provided that the data are interpreted in the reconstructing interface states model. Further inference from conductance data tends to favor the mobility fluctuation model. It is also pointed out that there is only one microscopic model that provides a unified mechanism which gives not only the dispersive dielectric loss and the 1/f noise at subthreshold but also the mobility fluctuations at inversion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nicollian, E. H. and Goetzberger, A., Bell Syst. Tech. J., 46 (1967) 1055.CrossRefGoogle Scholar
2 van der Ziel, A., Adv. Electron. Electron Phys., 49 (1979) 225.CrossRefGoogle Scholar
3 Hofstein, S. R., Solid-State Electron., 10 (1967) 657.CrossRefGoogle Scholar
4 Deal, B. E., Sklar, M., Grove, A. S. and Snow, E. H., J. Electrochem. Soc., 114 (1967) 266.Google Scholar
5 Goetzberger, A. and Nigh, S., Proc. IEEE, 54 (1966) 1454.CrossRefGoogle Scholar
6 Muira, Y. and Matakura, M., Jpn. J. Appl. Phys., 6 (1967) 582.CrossRefGoogle Scholar
7 Breed, D. J., Solid-State Electron., 17 (1974) 1229.CrossRefGoogle Scholar
Breed, D. J. and Kramer, R. P., Solid-State Electron., 19 (1976) 897.CrossRefGoogle Scholar
8 Vandamme, L. K. J. and Dik, L. S. H., Proc. 6th Int. Conf. on Noise in Physical Systems, in NBS Spec. Publ. 614, 1981, p. 244 (National Bureau of Standards, U.S. Department of Commerce).Google Scholar
9 Ngai, K. L. and White, C. T., J. Appl. Phys., 52 (1981) 320.CrossRefGoogle Scholar
10 Nicollian, E. H. and Melchior, H., Bell Syst. Tec. J., 46 (1967) 2019.CrossRefGoogle Scholar
11 Cooper, J. A. and Schwartz, R. J., Solid-State Electron., 17 (1974) 641.CrossRefGoogle Scholar
12 Liu, S. T. and Huang, J. S. T., Proc. 6th Int. Conf. on Noise in Physical Systems, in NBS Spec. Publ. 614, 1981, p. 67 (National Bureau of Standards, U.S. Department of Commerce).Google Scholar
13 Liu, S. T. and van der Ziel, A., Appl. Phys. Lett., 37 (1981) 950.CrossRefGoogle Scholar
14 van Overstraeten, R. J., Declerk, G. J. and Muls, P. A., IEEE Trans. Electron. Devices, 22(1975) 282.Google Scholar
15 van der Ziel, A., Solid-State Electron., 18 (1975) 1031.CrossRefGoogle Scholar
16 Liu, S. T., Ngai, K. L. and Teitler, S., Ferroelectrics, 28 (1980) 369.CrossRefGoogle Scholar
17 Espe, W., Werkstoffkunde der Hochvakumtechnik, Band 2, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960, p. 463.Google Scholar
18 Ngai, K. L., Comments Solid State Phys., 9 (1979) 127;Google Scholar
9 (1980) 141.Google Scholar
19 Hooge, F. N., Physica (The Hague), 83B (1976) 14.Google Scholar
20 Ngai, K. L., Phys. Rev. B, 22 (1980) 2066.CrossRefGoogle Scholar
21 McWhorter, A. L., Semiconductor Surface Physics, University of Pennsylvania Press, Pittsburgh, PA, 1956, p. 207.Google Scholar
22 Jindal, R. J. and van der Ziel, A., J. Appl. Phys., 52 (1981) 2884.CrossRefGoogle Scholar