Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T15:56:48.463Z Has data issue: false hasContentIssue false

Structure of Frilled Carbon Nanowires Synthesized by Sulfur-assisted Chemical Vapor Deposition

Published online by Cambridge University Press:  15 March 2011

Tadashi Mitsui
Affiliation:
Nanomaterials Laboratory, National Institute for Materials Science (NIMS) Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
Takashi Sekiguchi
Affiliation:
Nanomaterials Laboratory, National Institute for Materials Science (NIMS) Sengen 1-2-1, Tsukuba, Ibaraki 305-0047, Japan
Mikka Nishitani-Gamo
Affiliation:
Insititute of Applied Physics and Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577, Japan
Yafei Zhang
Affiliation:
Core Research for Evolution Science and Technology (CREST) of Japan Science and Technology Cooperation (JST), c/o Advanced Materials Laboratory, NIMS Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
Toshihiro Ando
Affiliation:
Core Research for Evolution Science and Technology (CREST) of Japan Science and Technology Cooperation (JST), c/o Advanced Materials Laboratory, NIMS Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
Get access

Abstract

Effects of hydrogen sulfide on the structure of carbon nanotubes (CNTs) were studied using high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS). The CNTs were synthesized with an iron thin-film catalyst by microwave plasma-assisted CVD on the diamond substrate. The HRTEM images revealed that essentially all of the CNTs obtained in this study were multiwall (MWCNT). The addition of H2S resulted in nanotubes with split skins as cornhusks and/or frills. Electron energy loss spectra of the cornhusks indicated that they consist of sp2, sp3 and amorphous carbon phase. The spectra revealed that the sp3 to sp2 ratio at the points where cornhusks divide from the main stem was more than that at the edge of the cornhusks. No evidence of sulfur incorporation into the MWCNTs grown with the H2S addition was found. We speculate that the chemical nature of sulfur on the CNT growth yields such anomalous structure.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Iijima, S., Nature (London) 354, 56 (1991)Google Scholar
2. Saito, Y., Uemura, S. and Hamaguchi, K., Jpn. J. Appl. Phys. 37, L346 (1998)Google Scholar
3. Baughman, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallence, G. G., Mazzoldi, A., Rossi, D. D., Rinzler, A. G., Jaschinski, O., Roth, S. and Kertesz, M., Science 284, 1340 (1999)Google Scholar
4. Suenaga, K., Tence, M., Mory, C., Colliex, C., Kato, H., Okazaki, T., Shinohara, H., Hirahara, K., Bandow, S. and Iijima, S., Science 290, 2280 (2000)Google Scholar
5. Hirahara, K., Suenaga, K., Bandow, S., Kato, H., Okazaki, T., Shinohara, H. and Iijima, S., Phys. Rev. Lett. 85, 5384 (2000)Google Scholar
6. Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, Chin-Li and Lieber, C. M., Science 289, 94 (2000)Google Scholar
7. Darkrim, F. and Levesque, D., J. Chem. Phys. 109, 4981 (1998)Google Scholar
8. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S. and Heben, M. J., Nature (London) 386, 377 (1997)Google Scholar
9. Dillon, A. C. and Heben, M. J., Appl. Phys. A72, 133 (2001)Google Scholar
10. Ajayan, P. M. and Iijima, S., Nature (London) 361, 333 (1993)Google Scholar
11. Ajayan, P. M., Ebbesen, T. W., Ichihashi, T., Iijima, S., Tanigaki, K. and Hiura, H., Nature (London) 362, 522 (1993)Google Scholar
12. Wei, B., Zhang, J., Liang, J. and Wu, D., Carbon 36, 997 (1998)Google Scholar
13. Morishita, K. and Takarada, T., J. Mater. Sci. 34, 1169 (1999)Google Scholar
14. Hernadi, K., Siska, A., Thien-Nga, L., Forro, L. and Kiricsi, I., Solid State Ionics 141–142, 203 (2001)Google Scholar
15. Nishitani-Gamo, M., Xiao, C., Zhang, Y. F., Yasu, E., Kikuchi, Y., Sakaguchi, I., Suzuki, T., Sato, Y. and Ando, T., Thin Solid Films 382, 113 (2001)Google Scholar
16. Ago, H., Komatsu, T., Ohshima, S., Kuriki, Y. and Yumura, M., Appl. Phys. Lett. 77, 79 (2000)Google Scholar
17. Ci, L., Wei, J., Wei, B., Liang, J., Xu, C. and Wu, D., Carbon 39, 329 (2001)Google Scholar
18. Berger, S. D., McKenzie, D.R. and Martin, P. J., Philos. Mag. Lett. 57, 285 (1988)Google Scholar
19. Kulik, J., Lifshitz, Y., Lempert, G. D., Rabalais, J. W. and Marton, D., J. Appl. Phys. 76, 5069 (1994)Google Scholar
20. Yase, K., Horiuchi, S., Kyotani, M., Yumura, M., Uchida, K., Ohshima, S., Kuriki, Y., Ikazaki, F. and Yamahira, N., Thin Solid Films 273, 222 (1996)Google Scholar
21. Zhong, D., Liu, S., Zhang, G. and Wang, E. G., J. Appl. Phys. 89, 5939 (2001)Google Scholar
22. Reed, B. W., Sarikaya, M., Dalton, L. R. and Bertsch, G. F., Appl. Phys. Lett. 78, 3358 (2001)Google Scholar