Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T06:13:22.588Z Has data issue: false hasContentIssue false

Solid State NMR as A Probe of Inorganic Materials:Examples From Glasses and Sol-Gels

Published online by Cambridge University Press:  26 February 2011

Paul Guerry
Affiliation:
[email protected], University of Warwick, Department of Physics, Coventry, CV4 7AL, United Kingdom
Donna L Carroll
Affiliation:
[email protected], University of Warwick, Department of Physics, Coventry, CV4 7AL, United Kingdom
Phillips N Gunawidjaja
Affiliation:
[email protected], University of Warwick, Department of Physics, Coventry, CV4 7AL, United Kingdom
Prodipta Bhattacharya
Affiliation:
[email protected], University of Warwick, Department of Physics, Coventry, CV4 7AL, United Kingdom
Daniela Carta
Affiliation:
[email protected], University of Kent, School of Physical Sciences, Canterbury, CT2 7NH, United Kingdom
David M Pickup
Affiliation:
[email protected], University of Kent, School of Physical Sciences, Canterbury, CT2 7NH, United Kingdom
Ifty Ahmed
Affiliation:
[email protected], Eastman Institute UCL, 256 Gray's Inn Road, London, WC1X 8LD, United Kingdom
Ensanya Abouneel
Affiliation:
[email protected], Eastman Institute UCL, 256 Gray's Inn Road, London, WC1X 8LD, United Kingdom
Pam A Thomas
Affiliation:
[email protected], University of Warwick, Department of Physics, Coventry, CV4 7AL, United Kingdom
Jonathan C Knowles
Affiliation:
[email protected], Eastman Institute UCL, 256 Gray's Inn Road, London, WC1X 8LD, United Kingdom
Robert J Newport
Affiliation:
[email protected], University of Kent, School of Physical Sciences, Canterbury, CT2 7NH, United Kingdom
Mark E. Smith
Affiliation:
[email protected], University of Warwick, Department of Physics, Coventry, CV4 7AL, United Kingdom
Get access

Abstract

To understand amorphous and structurally disordered materials requires the application of a wide-range of advanced physical probe techniques and herein a combined methodology is outlined. The relatively short-range structural sensitivity of solid state NMR means that it is a core probe technique for characterizing such materials. The aspects of the solid state NMR contribution are emphasized here with examples given from a number of systems, with especial emphasis on the information available from 17O NMR in oxygen-containing materials. 17O NMR data for crystallization of pure sol-gel prepared oxides is compared, with new data presented from In2O3 and Sc2O3. Sol-gel formed oxide mixtures containing silica have been widely studied, but again the role and effect of the other added oxide varies widely. In a ternary ZrO2-TiO2-SiO2 silicate sol-gel the level of Q4 formation is dependent not only on the composition, as expected, but also the nature of the second added oxide. Sol-gel formed phosphates have been much less widely studied than silicates and some 31P NMR data from xerogel, sonogel and melt-quench glasses of the same composition are compared. The effect of small amounts of added antibacterial copper on phosphate glass networks is also explored.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wallidge, G. W., Anderson, R., Mountjoy, G., Pickup, D. M., Gunawidjaja, P., Newport, R.J., Smith, M. E., J. Mater. Sci., 6743, 39, 2004.Google Scholar
2. Cormier, L., Calas, G. and Gaskell, P.H., Chem. Geol., 349, 174, 2001.Google Scholar
3. Pickup, D. M., Sowrey, F. E., Drake, K. O., Smith, M. E. and Newport, R. J., Chem. Phys. Lett., 503 392, 2004.Google Scholar
4. Pickup, D. M., Ahmed, I., Fitzgerald, V., Moss, R. M., Weatherall, K. M., Knowles, J. C., Smith, M. E. and Newport, R. J., J. Non-Cryst. Solids, 3080, 352, 2006.Google Scholar
5. MacKenzie, K. J. D. and Smith, M. E., ‘Multinuclear Solid State NMR of Inorganic Materials’, Pergamon Press, 2002.Google Scholar
6. Ahbrook, S. E. and Smith, M. E., Chem. Soc. Rev., 718, 35, 2006.Google Scholar
7. Chadwick, A. V., Mountjoy, G., Nield, V. M., Poplett, I. J. F., Smith, M. E., Strange, J. H., Tucker, M. G., Chem. Mater., 1219, 13, 2001 Google Scholar
8. Day, V. W., Eberspracher, T. A., Klemperer, W. G. and Park, C. W., J. Amer. Chem. Soc., 8469, 115, 1993.Google Scholar
9. Bastow, T. J., Moodie, A. F., Smith, M. E. and Whitfield, H.J., J. Mater. Chem., 697, 3, 1993.Google Scholar
10. Pzarnsky, G. A. and McCormick, A. V., J. Mater. Chem., 1749, 4, 1994.Google Scholar
11. Florian, P., Massiot, D., Humbert, G. and Coutures, J. P., Comptes Rendues Acad. Sci. Paris, Série II, 99, 320, 1995.Google Scholar
12. Bastow, T. J., Smith, M. E. and Whitfield, H.J., J. Mater. Chem., 1951, 6, 1996 Google Scholar
13. Chadwick, A. V., Poplett, I. J. F., Maitland, D. T. S. and Smith, M.E., Chem. Mater., 864, 10, 1998.Google Scholar
14. Pickup, D. M., Mountjoy, G., Holland, M. A., Wallidge, G. W., Newport, R. J. and Smith, M.E., J. Mater. Chem., 1887, 10, 2000.Google Scholar
15. Dirken, P. J., Smith, M. E. and Whitfield, H. J., J. Phys. Chem., 395, 99, 1995.Google Scholar
16. Holland, M. A., Pickup, D. M., Mountjoy, G., Tsang, E. S. C., Wallidge, G. W., Newport, R. J. and Smith, M. E., J. Mater. Chem., 2495, 10, 2000.Google Scholar
17. Franks, K., Abrahams, I. and Knowles, J.C., J.Mater. Sci. Mater. Med., 609, 11, 2000.Google Scholar
18. Carta, D., Pickup, D. M., Knowles, J. C., Smith, M. E. and Newport, R.J., J. Mater. Sci., 2134, 15, 2005.Google Scholar
19. Carta, D., Pickup, D. M., Newport, R. J., Knowles, J. C., Smith, M. E. and Drake, K. O., Phys. Chem. Glasses, 365, 46, 2005.Google Scholar
20. Yoldas, B. E., J. Non-Cryst. Solids, 81, 38, 1980.Google Scholar
21. Beier, W., Gotkas, A. A. and Frischat, G. H., J. Am. Cram. Soc., 81, 38, 1980 Google Scholar
22. Suslick, K. S., Ann. Rev. Mater. Sci., 295, 29, 1999.Google Scholar
23. Oldfield, E., Coretsopoulous, C., Yang, S., Reven, L., Lee, H. C., Shore, J., Han, O.C., and Ramli, E., Physical Review B, 6832, 40, 1989.Google Scholar
24. Scolan, E., Magnenet, C., Massiot, D. and Sanchez, C., J. Mater. Chem., 2467, 9, 1999.Google Scholar
25. Ali, F., Smith, M. E., Steuernagel, S. and Whitfield, H. J., J. Mater. Chem., 261, 6, 1996.Google Scholar
26. Massiot, D., Fayon, F., Capron, M., King, I., Calvé, S. Le, Alonso, B., Durand, J.-O., Bujoli, B., Gan, Z. and Hoatson, G., Magn. Reson. Chem., 70, 40, 2002.Google Scholar
27. van Eck, E. R. H., Smith, M. E., Kohn, S. C., Solid State NMR, 181, 15, 1999.Google Scholar
28. Dirken, P. J., Dupree, R. and Smith, M. E., J. Mater. Chem., 1261, 5, 1995.Google Scholar
29. Gunawidjaja, P. N., Holland, M. A., Mountjoy, G., Pickup, D. M., Newport, R. J. and Smith, M. E., Solid State NMR, 88, 23, 2003.Google Scholar
30. Brow, R. K., J. Non-Cryst. Solids, 1, 263, 2000.Google Scholar
31. Carta, D., Knowles, J. C., Smith, M. E. and Newport, R.J., J. Non-Cryst. Solids, in pressGoogle Scholar
32. Cheetham, A. K., Clayden, N. J., Dobson, C. M. and Jakeman, R. J. B., J. Chem. Soc. Chem. Comm., 195, 1986.Google Scholar
33. van Wazer, J., ‘Phosphorus and its Compounds’, Vols 1 and 2, Interscience, New York, 1951.Google Scholar