Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T17:30:56.910Z Has data issue: false hasContentIssue false

Single Charge Electronics with Gold Nanoparticles and Organic Monolayers

Published online by Cambridge University Press:  14 April 2016

O. Pluchery
Affiliation:
Institut des NanoSciences de Paris, Université Pierre et Marie Curie, UPMC Univ Paris 06, UMR CNRS 7580, 4 place Jussieu, 75005 Paris, FRANCE
L. Caillard
Affiliation:
Institut des NanoSciences de Paris, Université Pierre et Marie Curie, UPMC Univ Paris 06, UMR CNRS 7580, 4 place Jussieu, 75005 Paris, FRANCE Laboratory for Surface & Nanostructure Modifications, Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Road, Dallas, Texas 75080, USA
A. Rynder
Affiliation:
Institut des NanoSciences de Paris, Université Pierre et Marie Curie, UPMC Univ Paris 06, UMR CNRS 7580, 4 place Jussieu, 75005 Paris, FRANCE Laboratory for Surface & Nanostructure Modifications, Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Road, Dallas, Texas 75080, USA
F. Rochet
Affiliation:
Laboratoire de Chimie Physique-Matière et Rayonnement, Université Pierre et Marie Curie, UPMC Univ Paris 06, CNRS UMR 7614, 11 rue Pierre et Marie Curie, 75005 Paris, FRANCE
Y. Zhang
Affiliation:
Lawrence Berkeley National Laboratory, University of California Berkeley, USA
M. Salmeron
Affiliation:
Lawrence Berkeley National Laboratory, University of California Berkeley, USA
Y. J. Chabal
Affiliation:
Laboratory for Surface & Nanostructure Modifications, Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Road, Dallas, Texas 75080, USA
Get access

Abstract

Gold nanoparticles can be used as ultimate electrical materials for storing electrons or controlling their flow for the next generation nano-electronic devices. These particles are the core element of assemblies where the electrical current is reduced to the smallest possible since electrons are controlled one by one by using the Coulomb blockade phenomenon. We prepared colloidal gold nanoparticles beteween 4 and 15 nm and grafted them on a grafted organic monolayer (GOM) on silicon. GOM are highly ordered monolayers prepared by hydrosilylation of alkene molecules and subsequently modified with an amine group so that gold nanoparticles can be firmly immobilized on top of the layer. We discuss several electrical properties at a single electron level. Using the conductive tip of KPFM, we were also able to reveal the spontaneous charging behavior of the gold nanoparticles so that the local work function of a 10 nm gold nanoparticle is only 3.7 eV. By placing an STM tip above a nanoparticle, Coulomb blockade allows controlling the number of electrons simultaneously injected in the nanoparticle. This opens the way for new kinds of single electron memories or single electron transistors.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Louis, C., Pluchery, O. (Eds.), Gold Nanoparticles for Physics, Chemistry and Biology, Imperial College Press, London, 2012, p. 395.10.1142/p815CrossRefGoogle Scholar
Widmann, D., Behm, R. J., Accounts of Chemical Research 47 (2014) 740749.10.1021/ar400203eCrossRefGoogle Scholar
Okumura, M., Haruta, M., Catalysis Today (2015).Google Scholar
Wong, K., Vongehr, S., Kresin, V. V., Phys. Rev. B 67 (2003) 035406.10.1103/PhysRevB.67.035406CrossRefGoogle Scholar
Hüfner, S., Photoelectron spectroscopy, principles and applications, Springer 2003.10.1007/978-3-662-09280-4CrossRefGoogle Scholar
Wood, D. M., Phys. Rev. Lett. 46 (1981) 749–749.10.1103/PhysRevLett.46.749CrossRefGoogle Scholar
Hontanon, E., Kruis, F. E., Aerosol Science and Technology 42 (2008) 310323.10.1080/02786820802054244CrossRefGoogle Scholar
Zhou, L., Zachariah, M. R., Chem. Phys. Lett. 525-26 (2012) 7781.10.1016/j.cplett.2011.11.045CrossRefGoogle Scholar
Stehlik, S., Petit, T., Girard, H. A., Kromka, A., Arnault, J.-C., Rezek, B., Journal of Nanoparticle Research 16 (2014).10.1007/s11051-014-2364-8CrossRefGoogle Scholar
Pluchery, O., SPIE Newsroom (2015).Google Scholar
Terry, J., Linford, M. R., Wigren, C., Cao, R., Pianetta, P., Chidsey, C. E. D., Appl. Phys. Let. 71 (1997) 10561058.10.1063/1.119726CrossRefGoogle Scholar
Cicero, R. L., Linford, M. R., Chidsey, C. E. D., Langmuir 16 (2000) 56885695.10.1021/la9911990CrossRefGoogle Scholar
Seitz, O., Boecking, T., Salomon, A., Gooding, J. J., Cahen, D., Langmuir 22 (2006) 69156922.10.1021/la060718dCrossRefGoogle Scholar
de Smet, L. C. P. M., Pukin, A. V., Sun, Q.-Y., Eves, B. J., Lopinski, G. P., Visser, G. M., Zuilhof, H., Sudhölter, E. J. R., Appl. Surf. Sc. 252 (2005) 2430.10.1016/j.apsusc.2005.01.107CrossRefGoogle Scholar
Faucheux, A., Gouget-Laemmel, A. C., Henry de Villeneuve, C., Boukherroub, R., Ozanam, F., Allongue, P., Chazalviel, J. N., Langmuir 22 (2006) 153162.10.1021/la052145vCrossRefGoogle Scholar
Fellah, S., Boukherroub, R., Ozanam, F., Chazalviel, J. N., Langmuir 20 (2004) 63596364.10.1021/la049672jCrossRefGoogle Scholar
Boukherroub, R., Current Opinion in Solid State and Materials Science 9 (2005) 6672.10.1016/j.cossms.2006.03.006CrossRefGoogle Scholar
Li, Y., Calder, S., Yaffe, O., Cahen, D., Haick, H., Kronik, L., Zuilhof, H., Langmuir 28 (2012) 99209929.10.1021/la3010568CrossRefGoogle Scholar
Thissen, P., Seitz, O., Chabal, Y. J., Progr. Surf. Sci. 87 (2012) 272290.10.1016/j.progsurf.2012.10.003CrossRefGoogle Scholar
Aureau, D., Varin, Y., Roodenko, K., Seitz, O., Pluchery, O., Chabal, Y. J., Phys, J.. Chem. C 114 (2010) 1418014186.Google Scholar
Caillard, L., Seitz, O., Campbell, P., Doherty, R., Lamic-Humblot, A.-F., Lacaze, E., Chabal, Y. J., Pluchery, O., Langmuir 29 (2013) 50665073.10.1021/la304971vCrossRefGoogle Scholar
Caillard, L., Sattayaporn, S., Lamic-Humblot, A.-F., Casale, S., Campbell, P., Chabal, Y. J., Pluchery, O., Nanotechnology 26 (2015) 065301.10.1088/0957-4484/26/6/065301CrossRefGoogle Scholar
Higashi, G. S., Chabal, Y. J., Trucks, G. W., Raghavachari, K., Appl. Phys. Let. 56 (1990) 656658.10.1063/1.102728CrossRefGoogle Scholar
Pluchery, O., Caillard, L., Benbalagh, R., Gallet, J.-J., Bournel, F., Zhang, Y., Lamic-Humblot, A. F., Salmeron, M., Chabal, Y. J., Rochet, F., Phys. Chem. Chem. Phys. (submitted).Google Scholar
Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., Plech, A., Phys, J.. Chem. B 110 (2006) 1570015707.10.1021/jp061667wCrossRefGoogle Scholar
Grabar, K. C., Allison, K. J., Baker, B. E., Bright, R. M., Brown, K. R., Freeman, R. G., Fox, A. P., Keating, C. D., Musick, M. D., Natan, M. J., Langmuir 12 (1996) 23532361.10.1021/la950561hCrossRefGoogle Scholar
Qu, X. H., Peng, Z. Q., Jiang, X., Dong, S. J., Langmuir 20 (2004) 25192522.10.1021/la035558+CrossRefGoogle Scholar
Himpsel, F. J., Hollinger, G., Pollak, R. A., Phys. Rev. B 28 (1983) 70147018.10.1103/PhysRevB.28.7014CrossRefGoogle Scholar
Sze, S. M., Physics of Semiconductor Devices, John Wiley & Sons, New-York, 1981, p. 868.Google Scholar
Segev, L., Salomon, A., Natan, A., Cahen, D., Kronik, L., Amy, F., Chan, C. K., Kahn, A., Phys. Rev. B 74 (2006) 165323 10.1103/PhysRevB.74.165323CrossRefGoogle Scholar
Zhang, Y., Pluchery, O., Caillard, L., Lamic-Humblot, A.-F., Casale, S., Chabal, Y. J., Salmeron, M., Nano Letters 15 (2015) 5155.10.1021/nl503782sCrossRefGoogle Scholar
Likharev, K. K., Proc. IEEE 87 (1999) 606632.10.1109/5.752518CrossRefGoogle Scholar
Ray, V., Subramanian, R., Bhadrachalam, P., Ma, Liang-Chieh, Kim, C.-U., Koh, S. J., Nature Nanotechnology 3 (2008) 603608.10.1038/nnano.2008.267CrossRefGoogle Scholar
Homberger, M., Simon, U., Roy, Philos. T.. Soc. A 368 (2010) 14051453.Google Scholar