Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T21:48:51.372Z Has data issue: false hasContentIssue false

A Self-Annealing Technique for Simultaneous Titanium Silicide and N+/P Junction Formation

Published online by Cambridge University Press:  25 February 2011

Manuela Finetti
Affiliation:
CNR-LAMEL, Via Castagnoli 1, 40126 Bologna, Italy
E. Gabilli
Affiliation:
CNR-LAMEL, Via Castagnoli 1, 40126 Bologna, Italy
R. Lotti
Affiliation:
CNR-LAMEL, Via Castagnoli 1, 40126 Bologna, Italy
G. Lulli
Affiliation:
CNR-LAMEL, Via Castagnoli 1, 40126 Bologna, Italy
P.G. Merli
Affiliation:
CNR-LAMEL, Via Castagnoli 1, 40126 Bologna, Italy
R. Nipoti
Affiliation:
CNR-LAMEL, Via Castagnoli 1, 40126 Bologna, Italy
M. Vittori Antisari
Affiliation:
ENEA - Div. Scienza dei Materiali -CRE- Casaccia, CP 2400 - Roma, Italy
Get access

Abstract

- P+ self-annnealing implantations through evaporated Ti is performed to simultaneously form the silicide and the junction underneath, avoiding the need for further post-implantation thermal treatments. The formation of the TiSi2, phase and the good quality of the silicon-silicide interface are observed, when operating at power densities ≤ 16 W/cm2. Deep phosphorus distributions extending below the silicide down to 480÷600 nm are obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Lee, D.H., Hart, R.R., Kiewit, D.A. and Marsh, O.J., Phys.Stat.Sol. (a), 15, 645 (1973).CrossRefGoogle Scholar
2 Weg, W.F. van der, Sigurd, D. and Mayer, J.W., in “Applications of Ion Beams to Metals”, Picraux, S.T., Elenisse, E.P. and Vook, F.L., Eds., (Plenum Publishing Corp., New York, 1974) p.209.Google Scholar
3 Matteson, S., Roth, J. and Nicolet, M.-A., Radiat.Eff., 42, 217 (1979)Google Scholar
4 Tsaur, B.Y., Liau, Z.L., Mayer, J.W. and Sheng, T.T., J.Appl.Phys. 50, 3978 (1979)Google Scholar
5 Chapman, G.E., Lau, S.S., Matteson, S. and Mayer, J.W., J.Appl.Phys. 50, 6321 (1979)Google Scholar
6 Wang, K.L., Bacon, F. and Reihl, R.F., J.Vac.Sci.Technol. 16, 1090 (1979)Google Scholar
7 Tsai, M.Y., Petersson, C.S., d'Heurle, F.M. and Maniscalco, V., Appl.Phys. Lett. 37, 295 (1980)Google Scholar
8 Tsaur, B.Y. and Anderson, C.H. Jr, Materials Research Society Symposia Proceedings, vol.18, Ludeke, R. and Rose, K., Eds., (North-Holland, New York, 1983) p.385 Google Scholar
9 Cembali, G.F., Merli, P.G. and Zignani, F., Appl.Phys.Lett. 38, 808 (1981)CrossRefGoogle Scholar
10 Gabilli, E., Lotti, R., Lulli, G., Merli, P.G. and Antisari, M. Vittori, Jap. J.Appl.Phys. 24, L14 (1985)CrossRefGoogle Scholar
11 Cembali, G., Finetti, M., Merli, P.G. and Zignani, F., J.Appl.Phys. 40, 62 (1982)Google Scholar
12 Gabilli, E., Lotti, R., Merli, P.G., Nipoti, R. and Ostoja, P., Appl.Phys.Lett., 41, 967 (1982)Google Scholar
13 Bentini, G.G., Nipoti, R., Berti, M., Drigo, A.V. and Cohen, C., J.Appl.Phys. (in press)Google Scholar
14 Murarka, P.S., J.Vac.Sci.Technol. 17, 795 (1980)Google Scholar
15 Tsuchimoto, T. and Tokuyama, T., Radiat.Eff. 6, 121 (1970)CrossRefGoogle Scholar
16 Cocito, M., (private communication)Google Scholar