Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T09:19:55.658Z Has data issue: false hasContentIssue false

Scaling Laws for Transport, Mechanical and Fracture Properties of Disordered Materials

Published online by Cambridge University Press:  21 February 2011

Muhammad Sahimi
Affiliation:
Department of Chemical Engineering, University of Southern California, Los Angeles, CA 90089-1211
Sepehr Arbabi
Affiliation:
Reservoir Engineering Research Institute, 845 Page Mill Road, Palo Alto, CA 94304.
Get access

Abstract

We discuss scaling laws for scalar and vector transport properties of, and fracture processes in, disordered materials. Random resistor networks, and elastic and superelastic percolation networks are used to model the disordered material. While scalar transport properties of such systems (e.g. conductivity or diffusivity) obey universal scaling laws near the percolation threshold, vector transport properties (e.g. elastic moduli) may not follow such universal laws, and the critical exponents characterizing such scaling laws may depend on the microscopic force laws of the system. On the other hand, fracture processes in such systems appear to obey universal scaling laws. In particular, the external stress F for the fracture of the system scales with its linear size L as F ˜ Ld-1/(ln L)ψ, where d is the dimensionality of the system and ψ is a small critical exponent (ψ ≃ 0.1). Moreover, as the macroscopic fracture point of the system is approached, the ratio of various elastic moduli of the system approaches a universal fixed point, independent of the microscopic details of the system. Finally, the distribution of fracture strength in a randomly reinforced system, or in a system near its percolation threshold with a broad distribution of elastic constants, is in the form of a Weibull distribution, rather than the recently-proposed Gumbel distribution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Stauffer, D., Introduction to Percolation Theory, Taylor and Francis, London, (1985).CrossRefGoogle Scholar
[2] Kirkpatrick, S., Rev. Mod. Phys., 45, 574 (1973).Google Scholar
[3] Ord, G., Payandeh, B. and Robert, M., Phys. Rev., B 37, 467 (1988).CrossRefGoogle Scholar
[4] Normand, J. -M., Herrmann, H. J. and Hajjar, M., J. Stat. Phys., 52, 441 (1988).Google Scholar
[5] Zabolitzky, J. G., Phys. Rev., B 30, 4077 (1984).Google Scholar
[6] Zabolitzky, J. G., Bergmann, D. J. and Stauffer, D., J. Stat. Phys., 44, 211 (1986).Google Scholar
[7] Pandey, R. B., Stauffer, D., Margolina, A. and Zabolitzky, J. G., J. Stat. Phys., 34, 877 (1984).Google Scholar
[8] Sahimi, M., Hughes, B. D., Scriven, L. E. and Davis, H. T., J. Phys. C, 16, L521 (1983). 226CrossRefGoogle Scholar
[9] Lobb, C. J. and Forrester, M., Phys. Rev., B 35, 1899 (1987).Google Scholar
[10] Drove, F., in Mechanics of Engineering Materials (Desai, C. S. and Gallagher, , eds.), John Wiley and Sons (1984), p. 179.Google Scholar
[11] Rudnicki, J. W. and Rice, J. R., J. Mech. Phys. Solids, 23, 371 (1975).CrossRefGoogle Scholar
[12] Knowles, J. K. and Steinberg, E., J. Elasticity, 8, 329 (1978).Google Scholar
[13] Lade, P. V., IUTAM Conference on Deformation and Failure of Granular Materials, Delft (1982), p. 641.Google Scholar
[14] Mindlin, R. D., Proc. 2nd U.S. National Congr. Appl. Mech., Ann Arbor, Michigan (1954), p. 8.Google Scholar
[15] Goddard, J. D., Proc. R. Soc. London A, 430, 105 (1990).Google Scholar
[16] Mohanty, K. K., Ph.D. Thesis, University of Minnesota, Minneapolis (1981).Google Scholar
[17] Stauffer, D., J. Chem. Soc. Faraday Trans. II, 72, 1354 (1976).Google Scholar
[18] Deptuck, D., Harrison, J. P. and Zawadzki, P., Phys. Rev. Lett., 54, 913 (1985).Google Scholar
[19] Mall, S. and Russel, W. B., J. Rheol., 31, 651 (1987).CrossRefGoogle Scholar
[20] Sahimi, M., Gavalas, G. R. and Tsotsis, T. T., Chem. Eng. Sci., 45, 1443 (1990).Google Scholar
[21] He, H. and Thorpe, M. F., Phys. Rev. Lett., 54, 2107 (1985).Google Scholar
[22] Sahimi, M. and Goddard, J. D., Phys. Rev., B 32, 1869 (1985).Google Scholar
[23] Arbabi, S. and Sahimi, M., Phys. Rev. Lett., 65, 725 (1990).CrossRefGoogle Scholar
[24] Jerauld, G. R., Ph.D. Thesis, University of Minnesota, Minneapolis (1985).Google Scholar
[25] Sahimi, M. and Arbabi, S., Phys. Rev., B 40, 4975 (1989).Google Scholar
[26] Roux, S. and Hansen, A., Europhys. Lett., 6, 301 (1988).Google Scholar
[27] Arbabi, S. and Sahimi, M., Phys. Rev. B, to be published (1991).Google Scholar
[28] Kirkwood, J. G., J. Chem. Phys., 7, 506 (1939).Google Scholar
[29] Keating, P. N., Phys. Rev., 152, 774 (1966).Google Scholar
[30] Phillips, J. C. and Thorpe, M. F., Solid State Commun., 53, 699 (1985).CrossRefGoogle Scholar
[31] Shante, V.K.S. and Kirkpatrick, S., Adv. Phys., 20, 325 (1971).Google Scholar
[32] Feng, S., Thorpe, M. F. and Garboczi, E. J., Phys. Rev., B 31, 276 (1985).Google Scholar
[33] Feng, S. and Sahimi, M., Phys. Rev., B 31, 1671 (1985).Google Scholar
[34] Knackstedt, M., Robert, M. and Payendeh, B., preprint (1990).Google Scholar
[35] Straley, J. P., Phys. Rev., B 15, 5733 (1977).Google Scholar
[36] Sahimi, M. and Arbabi, S., J. Stat. Phys., 62, 453 (1991).Google Scholar
[37] Gingold, D. B. and Lobb, C. J., Phys. Rev., B 42, 8220 (1990). 227Google Scholar
[38] Normand, J. -M. and Herrmann, H. J., Inter. J. Mod. Phys. C, to be published (1991).Google Scholar
[39] Arbabi, S. and Sahimi, M., J. Phys. A, 21, L863 (1988).Google Scholar
[40] Arbabi, S. and Sahimi, M., Phys. Rev. B, to be published (1991).Google Scholar
[41] Hansen, A. and Roux, S., Phys. Rev., B 40, 749 (1989).Google Scholar
[42] Arbabi, S. and Sahimi, M., Phys. Rev., B 38, 7173 (1988).CrossRefGoogle Scholar
[43] Arbabi, S. and Sahimi, M., Macromolecules, to be published (1991).Google Scholar
[44] Arbabi, S. and Sahimi, M., Phys. Rev. B, to be published (1991).Google Scholar
[45] Sahimi, M., J. Phys. A, 17, L601 (1984).Google Scholar
[46] Harris, A. B., Kim, S. and Lubensky, T. C., Phys. Rev. Lett., 53, 743 (1984).Google Scholar
[47] Sahimi, M., J. Phys. C, 19, L79 (1986).Google Scholar
[48] Herrmann, H. J. and Roux, S. (eds.), Statistical Models for the Fracture of Disordered Media, North-Holland, Amsterdam (1990).Google Scholar
[49] Griffith, A. A., Phil. Trans. R. Soc. Lond., 221, 163 (1921).Google Scholar
[50] Bažant, Z. P., ASME Appl. Mech. Rev., 39, 675 (1986).Google Scholar
[51] de Arcangelis, L., Redner, S. and Herrmann, H. J., J. Physique, 46, L585 (1985).Google Scholar
[52] Niemeyer, L., Pietronero, L. and Weismann, H. J., Phys. Rev. Lett., 52, 1023 (1984).Google Scholar
[53] Takayasu, H., Phys. Rev. Lett., 54, 1099 (1985).CrossRefGoogle Scholar
[54] Sahimi, M. and Goddard, J. D., Phys. Rev., B 33, 7848 (1986).CrossRefGoogle Scholar
[55] Duxbury, P. M., Leath, P. L. and Beale, P. D., Phys. Rev. Lett., 57, 1052 (1986).Google Scholar
[56] Duxbury, P. M., Beale, P. D. and Leath, P. L., Phys. Rev., B 36, 367 (1987).Google Scholar
[57] Duxbury, P. M. and Leath, P. L., J. Phys. A, 20, L411 (1987).Google Scholar
[58] Beale, P. D. and Srolovitz, D. J., Phys. Rev., B 37, 5500 (1988).Google Scholar
[59] Hassold, G. N. and Srolovitz, D. J., Phys. Rev., B 39, 9273 (1989).Google Scholar
[60] Kahng, B., Batrouni, G. G., Redner, S., de Arcangelis, L. and Herrmann, H. J., Phys. Rev., B 37, 7625 (1988).Google Scholar
[61] de Arcangelis, L. and Herrmann, H. J., Phys. Rev., B 39, 2678 (1989).Google Scholar
[62] Herrmann, H. J., Hansen, A. and Roux, S., Phys. Rev., B 39, 637 (1989).Google Scholar
[63] Sieradzki, K. and Newman, R. C., Phil. Mag. A, 51, 95 (1985).CrossRefGoogle Scholar
[64] Sahimi, M. and Arbabi, S., Phys. Rev. B, to be published (1991).Google Scholar
[65] Stephens, M. D. and Sahimi, M., Phys. Rev., B 36, 8656 (1987).Google Scholar
[66] Sornette, D., J. Physique, 48, 1843 (1987); 49, 889 (1988).Google Scholar
[67] van den Born, I. C., Santen, A., Hoekstra, H. D. and De Hosson, J. Th. M., Phys. Rev., B 43, 3794 (1991).Google Scholar
[68] Brace, W. F. and Orange, A. S., J. Geophys. Res., 73, 1433 (1968).Google Scholar
[69] van Mier, J. G. M., Matériaux et Constructious, 19, 179 (1986).Google Scholar
[70] Arbabi, S. and Sahimi, M., Phys. Rev., B 41, 772 (1990).Google Scholar
[71] de Arcangelis, L., Hansen, A., Herrmann, H. J. and Roux, S., Phys. Rev., B 40, 877 (1989).Google Scholar
[72] Sahimi, M. and Arbabi, S., Phys. Rev. Lett., to be published (1991).Google Scholar
[73] Martin, J. L. and Zunger, A., Phys. Rev., B 30, 6217 (1984).Google Scholar
[74] Aharony, A., Phys. Rev., B 22, 400 (1980).Google Scholar
[75] Schwartz, L. M., Feng, S., Thorpe, M. F. and Sen, P. N., Phys. Rev., B 32, 4607 (1985).Google Scholar
[76] Schwartz, L. M., Johnson, D. L. and Feng, S., Phys. Rev. Lett., 52, 831 (1984).Google Scholar