Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T03:18:10.118Z Has data issue: false hasContentIssue false

RRAM electronics and Switching Mechanism

Published online by Cambridge University Press:  01 February 2011

Sheng Teng Hsu
Affiliation:
[email protected], Sharp Laboratories of America, Department 5, 5700 NW Pacific Rim Blvd, Camas, WA, 98607, United States, (360) 834-8698, (360) 834-8689
TingKai Li
Affiliation:
[email protected], Sharp Laboratories of America, Department 5, 5700 NW Pacific Rim Blvd, Camas, WA, 98607, United States
Get access

Abstract

The property of PCMO RRAM memory devices have been studied in terms of electrical pulse width, Pulse polarity, voltage ramping, film thickness, resistivity distribution, and temperature dependent of resistance. The PCMO material is deposited using MOD, PVD, or PLD process. The experimental results clearly indicated the resistance increase is due to localization of valence electrons. The narrow pulse induced resistance increase near the cathode indicated the localization of valence electrons is the effect of high density of excessive non-equilibrium electrons through the well known Jahn-Teller effect. High density of non-equilibrium electrons may also be induced by any other means such as displacement current, space charge limited current, SCLC, and radiation. High field intensity collapses the localized valence electrons and returns the device to the low resistance state. This is the intrinsic property of transition metal oxides. We expect all doped and un-doped transition metal oxides to exhibit resistance switching property.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Gibbons, J. F. and Beadle, W. E., Solid-State Electron. 7, p.785 (1964)Google Scholar
2 Hiatt, W. R. and Hickmott, T. W., Appl. Lett. 6, p.106 (1965)Google Scholar
3 Chopra, K. L., J. Appl. Phys. 36, p.184 (1965)Google Scholar
4 Argall, F., Solid-State Electron. 11, p.535 (1968)Google Scholar
5 Hickmott, T. W., J. Vac. Sci. Technol. 6, p.828 (1969)Google Scholar
6 Bruyere, J. C. and Chakraverty, B. K., Appl. Phys. Lett. 16, p.40, (1970)Google Scholar
7 Hovel, H. J. and Urgell, J. J., J. Appl. Phys. 42, p.5076 (1971)Google Scholar
8 Liu, S. Q., Wu, N. J., and Ignatiev, A., Appl. Phys. Lett. 76, p.2749 (2000)Google Scholar
9 Liu, S. Q., Wu, N. J., and Ignatiev, A., NASA Non-Volatile Memory Technology Symposium 2001 Proceedings, p.18 Google Scholar
10 Beck, A., Bednorz, J. G., Gerber, Ch., Rossel, C., and Widmer, D., Appl. Phys. Lett. 77, p.139 (2000)Google Scholar
11 Watanabe, Y., Bednorz, J. G., Bietsch, A., Gerber, Ch., Widmer, D., and A. Beck, Appl. Phys. Lett. 78, p.3738 (2001)Google Scholar
12 Sluis, P. van der, Appl. Phys. Lett. 82, p.4089 (2003)Google Scholar
13 Liu, S. Q., Wu, N. J., Ignatiev, A., Zhuang, W. W., and Hsu, S. T., NASA Proceedings Non-Volatile Memory Technology Symposium 2002, p.159162 Google Scholar
14 Baikalov, A., Wang, Y. Q., Lorenz, B., Sun, S. A., Xue, Y. Y., Chu, C. W., Appl. Phys. Lett. 183, p.957 (2003)Google Scholar
15 Sawa, A., Fujii, T., Kawasaki, M., and Tokura, Y., Appl. Phys. Lett. 85, p.4073 (2004)Google Scholar
16 Back, I. G., Lee, M. S., Seo, S., Suh, M. J., Park, J. C., Park, S. O., Kim, H. S., Yoo, I. K., Chung, U-in, and Moon, J. T.. 2004 IEDM, Paper 23.6, Technical Digest p.587590 Google Scholar
17 Kim, C. J. and Chen, I-W. Jap Appl. Phys. Vol. 44, No. 17, 2005, p. L 525–L 527Google Scholar
18 Chen, X., Wu, N. J., Strozier, J., and Ignatiev, A., APL 87, p233506, 2005 Google Scholar
19 Hsu, S. T., NVMW 2003 Session #6, paper #4Google Scholar
20 Hsu, S. T., Zhuang, W. W., Li, T. K., Pan, W., Ignatiev, A., Papagianni, C., and Wu, N. J., p. 121124, 2005 Non-volatile Memory Technology Symposium, 7-10 November 2005Google Scholar
21 Lee, H-S., Choi, S., Salvador, P. A., and Bain, J. A., “Delta-R Perovskite Film for Nonvolatile Storage” 2004 Fall MRS Meeting, Materials and Processes for Non-Volatile Memories, paper D7.8, December 2, 2004, Boston. MA Google Scholar
22 Hsu, S. T., Li, T. K. and Awaya, N., JAP 101 024517 (2007)Google Scholar
23 Papagiani, C., Nian, Y. B., Wang, Y. Q., Wu, N. J.. Ignatiev, A., and Hsu, S. T., p.125128, 2004 Non-Volatile Memory Technology SymposiumGoogle Scholar
24 Hsu, S. T., Pan, W., Zhuang, W. W., IEEE Non-Volatile Semiconductor Memory Workshop Feb 16 – 20, 2003. Technical Digest p.9798 Google Scholar
25 Ziel, A. van der, “Solid State Physical electronics2 Edition, Prentice-Hall, Inc., 1968, p.134 Google Scholar
26 Sze, S. M., “Physics of Semiconductor Devices” 2nd Edition, Wiley-Interscience Publication, 1981, p.55 Google Scholar
27 Wright, C. T., “Mechanism of space charge limited current in solids”, Solid-Stat. Elect. Vol.2, p.165189 (1961)Google Scholar
28 Mathur, N. D., Littlewood, P. B., Solid State Communication. 119, p.271 (2001)Google Scholar
29 Ramirez, A. P., J. Phys. Condens. Matter 9, p.8171, (1997)Google Scholar
30 Imada, M., Fujimori, A., and Tokura, Y., Rev. of Mod. Phys, 70, p.1039 (1998)Google Scholar
31 Shimomura, S. et al. , Phys. Rev. B. Vol.62, #6, p.3875, (2000)Google Scholar