Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T10:41:25.707Z Has data issue: false hasContentIssue false

The Role of Nanoscale Silicon in Optical Interconnects

Published online by Cambridge University Press:  11 February 2011

Philippe M. Fauchet*
Affiliation:
Department of Electrical and Computer Engineering, University of Rochester, Rochester NY, USA
Get access

Abstract

The semiconductor industry association roadmap has identified interconnects as a major barrier to progress starting in 2010. Optical interconnects (OI) offer an attractive solution for chip-to-chip communications, however there is no general agreement on how to design them. Eventually, OI may also perform a large amount of intra-chip clocking and signaling, which implies that any chip-to-chip OI system must be designed to be compatible with intra-chip OI, from the points of view of manufacturability, architecture, and device design. We are exploring the use of nanoscale silicon for OI. This paper reports progress toward the demonstration of two basic building blocks of an OI system, namely a Si laser and a Si-based modulator.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Semiconductor Industry Association (SIA) roadmap (1997), http://public.itrs.net Google Scholar
2. Pollack, .F, “New microarchitecture challenges in the coming generations of CMOS process technologies” plenary talk at the MICRO-32 ACM/IEEE International Symposium on Microarchitecture, Haifa, Israel, (1999)Google Scholar
3. Kapur, P. and Saraswat, K.C., “Optical interconnects for future high performance integrated circuits,” presented at the European Materials Research Society, Strasbourg, June 2002; also,Google Scholar
Kapur, P., Ph.D. Dissertation, Stanford University, 2002 Google Scholar
4. Miller, D.A.B., Proc. IEEE 88, 728 (2000)Google Scholar
5. Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990)Google Scholar
6. Fauchet, P.M. and von Behren, J., Phys. Stat. Sol. (b) 204, R7 (1997)Google Scholar
7. Fauchet, P.M., in Encyclopedia of Applied Physics, Update 2, Wiley-VCH Verlag, pp 249272 (1999)Google Scholar
8. Hirschman, K.D. et al., Nature 384, 338 (1996)Google Scholar
9. Gelloz, B. and Koshida, N., J. Appl. Phys. 88, 4319 (1999)Google Scholar
10. Green, M.A. et al., Nature 412, 805 (2001)Google Scholar
11. Pacifico, D. et al, “Rare-earth doped Si nanocrystals: physical properties and electroluminescent devices,” presented at the Fall Materials Research Society meeting, Boston, December 2002.Google Scholar
12. Coffa, S., invited presentation to be given at the Spring Materials Research Society meeting, San Francisco, April 2003; see also “STMicroelectronics sets world record for silicon light emission,” press release at http://eu.st.com/stonline/index/shtml Google Scholar
13. Peng, C. and Fauchet, P.M., Appl. Phys. Lett. 67, 2515 (1995)Google Scholar
14. Pavesi, L. et al., Nature 408, 440 (2000)Google Scholar
15. Khriachtchev, L. et al., Appl. Phys. Lett. 79, 1249 (2001)Google Scholar
16. Dal Negro, L. et al., in Optical Properties of Nanocrystals, Gaburro, Z. editor, SPIE Proc. Vol. 4808, pp 1327 (2002)Google Scholar
17. Luterová, K. et al., Appl. Phys. Lett., 91, 2896 (2002)Google Scholar
18. Valenta, J. et al., Appl. Phys. Lett. 81, 1396 (2002)Google Scholar
19. Wolkin, M.V. et al., Phys. Rev. Lett. 82, 197 (1999)Google Scholar
20. Puzder, A. et al., Phys. Rev. Lett. 88, 97401 (2002)Google Scholar
21. Ossicini, S. et al., in Optical Properties of Nanocrystals, Gaburro, Z. editor, SPIE Proc. Vol. 4808, pp 7384 (2002)Google Scholar
22. Ossicini, S., “Gain theory and models in silicon nanostructures,” to appear in Proc. NATO Advanced Research Workshop on Optical Amplification and Stimulated Emission in Silicon (2003)Google Scholar
23. Chabal, Y.J., et.al., Phys Rev. B 66, 161315 (2002)Google Scholar
24. Tsybeskov, L. et al., Appl. Phys. Lett. 72, 43 (1998)Google Scholar
25. Grom, G.T., et al., Nature 407, 358 (2000)Google Scholar
26. Zacharias, M. et al., Appl. Phys. Lett. 74, 2614 (1999)Google Scholar
27. Zacharias, M. et al., Phys. Rev. B 62, 8391 (2000)Google Scholar
28. Fauchet, P.M., and Ruan, J., “Optical Amplification In Nanocrystalline Silicon Superlattices,” to appear in Proc. NATO Advanced Research Workshop on Optical Amplification and Stimulated Emission in Silicon (2003)Google Scholar
29. Leonard, S.W., van Driel, H. M., Birner, A., Gösele, U., and Villeneuve, P. R., Optics Lett. 25, 1550 (2000)Google Scholar
30. Weiss, S.M. and Fauchet, P.M., “Electrically tunable porous silicon active mirrors,” to appear in Physica Status Solidi (2003)Google Scholar
31. Pavesi, L., Riv. Nuovo Cimento 20, 1 (1997)Google Scholar
32. Chan, S. and Fauchet, P. M., Appl. Phys. Lett. 75, 274 (1999)Google Scholar
33. Lopez, H.A., Chen, X. L., Jenekhe, S. A., and Fauchet, P. M., J. Lumin. 80, 115 (1999)Google Scholar
34. Chan, S., Horner, S. R., Fauchet, P. M., and Miller, B. L., J. Am. Chem. Soc. 123, 11797 (2001)Google Scholar
35. Shimoda, Y., Ozaki, M., and Yoshino, K., Appl. Phys. Lett. 79, 3627 (2001)Google Scholar
37. Lerondel, G., private communication, August 2002 Google Scholar
36. Weiss, S.M., and Fauchet, P. M., Proc. of SPIE 4654, 36 (2002)Google Scholar