Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T07:59:41.873Z Has data issue: false hasContentIssue false

The Role of Hydrogen in Laser Deposition of Diamond-Like Carbon

Published online by Cambridge University Press:  28 February 2011

D. Thebert-Peeler
Affiliation:
Clare Boothe Luce Scholar, Graduate Materials Engineering, University of Dayton, Dayton, OH 45469
P. T. Murray
Affiliation:
University of Dayton Research Institute, University of Dayton, Dayton, OH 45469–0167
L. Petry
Affiliation:
University of Dayton Research Institute, University of Dayton, Dayton, OH 45469–0167
T. W. Haas
Affiliation:
Wright Laboratory, WL/MLBM, Wright -Patterson Air Force Base, OH 45433
Get access

Abstract

Thin films have been grown on Si (100) substrates by pulsed laser evaporation of graphite using both IR and UV radiation. The character of the resulting film is found to be independent of the presence of H°. Diamond-like films are found to be a result of low (RT) temperature deposition of the higher energy incident particles of the UV (versus IR) laser ablation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Deutchman, A.H. and Partyka, R.J., Advanced Materials and Processes 22 (1989).Google Scholar
[2] Cuomo, J.J., Pappas, D.L., Doyle, J.P., Bruley, J., and Saenger, K.L., to be published in the Proceedings of TMS 1991.Google Scholar
[3] Cuomo, J.J., Pappas, D.L., Bruley, J., Doyle, J.P., and Saenger, K.L., submitted to the Journal of Applied Physics (1/91).Google Scholar
[4] Cuomo, J.J., Bruley, J., Doyle, J.P., Pappas, D.L., Saenger, K.L., Liu, J.C., and Batson, P.E., submitted to the Journal of Materials Research 1991.Google Scholar
[5] Demers, R.T. and Harris, D.G., SPIE Vol 1146, Diamond Optics II, (1989) p. 48.Google Scholar
[6] Krishnaswamy, J., Rengan, A., Srivatsa, A., Narayan, J., Cong, Y., Collins, R., and Vedam, K., Mat. Res. Soc. Symp. Proc, Vol 129, (1989), p. 219.Google Scholar
[7] Krishnaswamy, J., Rengan, A., and Narayan, J., Mat. Res. Soc. Symp. Proc, Vol 129, (1989) p. 106.Google Scholar
[8] Sato, T., Furuno, S., Iguchi, S., and Hanabusa, M., Jpn. J. Appl. Phys. 26, (1987).Google Scholar
[9] Rengan, A., Srivatsa, A.R., Krishnaswamy, J., Narayan, J., Mat. Res, Soc. Symp., Vol 129, (1989) p. 456.Google Scholar
[10] Krishnaswamy, J., Rengan, A., Narayan, J., Vedam, K., and McHargue, C.J., Appl. Phys. Lett. 54, 2455 (1989).Google Scholar
[11] Danvaloo, F., Juengerman, E.M., Jander, D.R., Lee, T.J. and Collins, C.B., J. Appl. Phys. 67, 2081 (1990).Google Scholar
[12] Martin, J.A., Vazquez, L., Bernard, P., Comin, F. and Ferrer, S., Appl. Phys. Lett. 57 (1990).Google Scholar
[13] Collins, C.B., Danvaloo, F., Juengerman, E.M., Jander, D.R., and Lee, T.J., SPIE Vol 1146, Diamond Optics II, (1989) p. 37.Google Scholar
[14] Pivin, J.C., Spirckel, M., Allouard, M., and Rautureau, G., Appl. Phys. Lett., 57, 2657 (1990).Google Scholar
[15] Collins, C.B., Danvaloo, F., Juengerman, E.M., Osborn, W.R., and Jander, D.R., Appl. Phys. Lett. 54, 316 (1989).Google Scholar
[16] Wagal, S.S., Juengerman, E.M., and Collins, C.B., Appl. Phys. Lett. 53, 187 (1988).Google Scholar
[17] Fujimori, S., Kasai, T. and Inamura, T., Thin Solid Films 92, 71 (1982).Google Scholar
[18] Dejaguin, B.V. and Fedoseev, D.V., Growth of Diamond and Graphite from the Gas Phase (in Russian), Nanka, Moscow (1977).Google Scholar
[19] Badzian, A.R., Somonion, B., Badzian, T., Messier, R., Spear, K. and Roy, R., Proc. Of SPIE Conf. 683: 127 (1986).Google Scholar
[20] Badzian, A.R. and Devries, R.C., Crystallization of Diamond from the Gas Phase: Part 1, Mat. Res. Bull., Vol. 23, pp. 385–400, (1988).Google Scholar
[21] Frenklach, M. and Wang, Hai, APS, Vol 43, 1545 (1991).Google Scholar