Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:39:15.206Z Has data issue: false hasContentIssue false

Residual Stress of Focused Ion Beam-Exposed Polycrystalline Silicon

Published online by Cambridge University Press:  26 February 2011

Kim M. Archuleta
Affiliation:
[email protected], Sandia National Laboratories, Thin Film, Vacuum and Packaging, P.O. Box 5800, Albuquerque, NM, 87185, United States, 505-844-8317, 505-844-1110
David P. Adams
Affiliation:
[email protected], Sandia National Laboratories, Albuquerque, NM, 87185, United States
Michael J. Vasile
Affiliation:
[email protected], Sandia National Laboratories, Albuquerque, NM, 87185, United States
Julia E. Fulghum
Affiliation:
[email protected], University of New Mexico, Albuquerque, NM, 87106, United States
Get access

Abstract

Medium energy (30 keV) focused gallium ion beam exposure of silicon results in a compressive in-plane stress with a magnitude as large as 0.4 GPa. Experiments involve uniform irradiation of thin polysilicon microcantilevers (200 micron length) over a range of dose from 1 x 1016 to 2 x 1018 ions/cm2. The radii of curvature of microcantilevers are measured using white light interferometry before and after each exposure. The residual stress is determined from these radii and other measured properties using Stoney's equation. The large residual stress is attributed to ion beam damage, microstructural changes and implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kim, Y., Chen, P., Aziz, M. J., Branton, D., and Vlassak, J. J., submitted J. Appl. Phys. (2006).Google Scholar
2. Inkson, B. J., Leclere, D., Elfallagh, F., and Derby, B., J. of Physics Conf. Ser. 26, 219 (2006).Google Scholar
3. Windischmann, H., Crit. Rev. in Solid State and Mat. Sci. 17(6) 547 (1992).Google Scholar
4. Stoney, G. G., Proc. R. Soc. London, Ser. A 82, 172 (1909).Google Scholar
5. Jensen, B. D., de Boer, M. P., Masters, N. D., Bitise, F., and LaVan, D. A., J. of Microelectromechanical Systems, 10(3) 336 (2001).Google Scholar
6. Ziegler, J. F., Biersack, J. P. and Littmark, U. in The Stopping and Range of Ions in Solids, (Pergamon Press, New York, 1985). see also www.srim.org; Version 2003.26.Google Scholar
7. Freund, L. B., Floro, J. A., and Chason, E., App. Phy. Lett. 74(14), 1987 (1999).Google Scholar
8. Chen, K-S. and Ou, K-S., J. of Micromech. and Microeng. 12, 917 (2002).Google Scholar
9. Clos, R., Dadgar, A., and Krost, A., Phys. Stat. Sol. A 201(11), R75 (2004).Google Scholar
10. Finot, M., Blech, I.A., Suresh, S., and Fujimoto, H., J. Appl. Phys. 81(8), 3457 (1997).Google Scholar