Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:18:13.993Z Has data issue: false hasContentIssue false

Rapid Prototyping of Patterned Multifunctional Nanostructures

Published online by Cambridge University Press:  10 February 2011

Hongyou Fan
Affiliation:
The University of New Mexico/NSF Center for Micro-Engineered Materials, The Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM
Gabriel P. Laópez
Affiliation:
The University of New Mexico/NSF Center for Micro-Engineered Materials, The Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM
C. Jeffrey Brinker
Affiliation:
The University of New Mexico/NSF Center for Micro-Engineered Materials, The Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM
Get access

Abstract

The ability to engineer ordered arrays of objects on multiple length scales has potential for applications such as microelectronics, sensors, wave guides, and photonic lattices with tunable band gaps. Since the invention of surfactant templated mesoporous sieves in 1992, great progress has been made in controlling different mesophases in the form of powders, particles, fibers, and films. To date, although there have been several reports of patterned mesostructures, materials prepared have been limited to metal oxides with no specific functionality. For many of the envisioned applications of hierarchical materials in micro-systems, sensors, waveguides, photonics, and electronics, it is necessary to define both form and function on several length scales. In addition, the patterning strategies utilized so far require hours or even days for completion. Such slow processes are inherently difficult to implement in commercial environments. We present a series of new methods of producing patterns within seconds. Combining sol-gel chemistry, Evaporation-Induced Self-Assembly (EISA), and rapid prototyping techniques like pen lithography, ink-jet printing, and dip-coating on micro-contact printed substrates, we form hierarchically organized silica structures that exhibit order and function on multiple scales: on the molecular scale, functional organic moieties are positioned on pore surfaces, on the mesoscale, mono-sized pores are organized into 1-, 2-, or 3-dimensional networks, providing size-selective accessibility from the gas or liquid phase, and on the macroscale, 2-dimensional arrays and fluidic or photonic systems may be defined. These rapid patterning techniques establish for the first time a link between computer-aided design and rapid processing of self-assembled nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Yang, H., Coombs, N., Ozin, G. A., Adv. Mater. 1997, 9, 811.Google Scholar
[2] Kresge, C., Leonowicz, M., Roth, W., Vartuli, C., Beck, J., Nature 1992, 359, 710.Google Scholar
[3] Xia, Y., Whitesides, G. M., Angew. Chem. Int. Ed. 1998, 37,550.Google Scholar
[4] Trau, M., Uao, N., Lim, E., Xia, Y., Whitesides, G. M., Aksay, I. A., Nature 1997, 390, 674.Google Scholar
[5] Yang, P., Deng, T., Zhao, D., Feng, P., Pine, D., Chmelka, B. F., Whitesides, G. M., Stucky, G. D., Science 1998, 282, 2244.Google Scholar
[6] Antonietti, M., Berton, B., Goltner, C., Hentze, H. P., Adv. Mater. 1998, 10, 154.Google Scholar
[7] Brinker, c. J., Lu, Y., Sellinger, A., Fan, H., Adv. Mater. 1999, 11, 579.Google Scholar
[8] Piner, R. D., Zhu, J., Xu, F., Hong, S., Mirkin, C. A., Science 1999, 283, 661.Google Scholar
[9] Yang, P., Dimos, D., Rodriguez, M. A., Huang, R. F., Dai, S., Wilcox, D., Mat. Res. Soc. Symp. Proc. 1999, 542, 159.Google Scholar
[10] Chang, S.-C., Liu, J., Bharathan, J., Yang, Y., Onohara, J., Kido, J., Adv. Mater. 1999, 11, 734.Google Scholar
[11] Pede, D., Serra, G., De Rossi, D., Mat. Sci. and Eng. 1998, C5, 289.Google Scholar
[12] Burkett, S. L., Sims, S. D., Mann, S., Chem. Commun. 1996, 1367.Google Scholar
[13] Fowler, C. E., Burkett, S. L., Mann, S., Chem. Commun. 1997, 1769.Google Scholar
[14] Lim, M. H., Blanford, C. F., Stein, A., J. AM. Chem. Soc. 1997, 119,4090.Google Scholar
[15] Bain, C. D., Troughton, E. B., Tao, Y.-T., Evall, J., Whitesides, G. M., Nuzzo, R. G., J. Am. Chem. Soc. 1989, 111, 321.Google Scholar
[16] Tender, L. M., L., W. R., Fan, H., Lopez, G. P., Langmuir 1996, 12, 5515.Google Scholar
[17] Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W. L., Guo, Y. X., Soyez, H., Dunn, B., Huang, M. H., Zink, J. I., Nature 1997, 389, 364.Google Scholar
[18] Lu, Y., Fan, H., Stump, A., Ward, T. L., Reiker, T., Brinker, C. J., Nature 1999, 398, 223.Google Scholar
[19] Cairncross, R. A., Schunk, P. R., Baer, T. A., Rao, R. R., Sackinger, P. A., Int. J. Numer. Meth. Fluids to appear 2000.Google Scholar
[20] Baer, T. A., Cairncross, R. A., Schunk, P. r., Rao, R. R., Sackinger, P. A., Int. J. Numer. Meth. Fluids to appear 2000.Google Scholar
[21] Aksay, I. A., Science 1996, 273, 892.Google Scholar
[22] Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S., Ozin, G. A., Nature 1996, 379, 703.Google Scholar
[23] Yang, H., Coombs, N., Sokolov, I., Ozin, G. A., Nature 1996, 381, 589.Google Scholar
[24] Wilbur, J. L., Kumar, A., Biebuyck, H. A., Kim, E., Whitesides, G. M., Nanotechnology 1996, 7,452.Google Scholar
[25] Frye, G. C., Ricco, A. J., Martin, S. J., Brinker, C. J., in Better Ceramics Through Chemistry III, Vol. 121 (Eds.: Brinker, C. J., Clark, D. E., Ulrich, D. R.), Mat. Res. Soc., Reno, Nevada, 1988, pp. 349.Google Scholar