Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T05:30:40.187Z Has data issue: false hasContentIssue false

Radical and Molecular Product Concentration Measurements in CH4 RF Plasmas by Infrared Tunable Diode Laser Absorption

Published online by Cambridge University Press:  21 February 2011

J. Wormhoudt*
Affiliation:
Center for Chemical and Environmental Physics, Aerodyne Research, Inc., Billerica, Massachusetts 01821
Get access

Abstract

Infrared tunable diode laser absorption studies of radicals and stable molecules formed in radio frequency plasmas are being carried out in a laboratory reactor which allows a long absorption path. In this paper we describe studies of CH4 RF plasmas. We report absolute concentration measurements as functions of total pressure and RF power for CH3 and C2H2 in CH4 plasmas, as well as measurements of the CH4 rotational temperature and dissociation fraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wormhoudt, J., Stanton, A. C., Richards, A. D. and Sawin, H. H., J. Appl. Phys. 61, 142 (1987).Google Scholar
2. Richards, A. D., Thompson, B.E., Allen, K.D. and Sawin, H.H., J. Appl. Phys. 62, 792 (1987).Google Scholar
3. Richards, A. D. and Sawin, H. H., J. Appl. Phys. 62, 799 (1987).Google Scholar
4. DeJoseph, C.A. Jr., Haaland, P.D. and Garscadden, A., IEEE Trans. Plasma Science PS–14, 165 (1986).Google Scholar
5. Chollet, P., Guelachvili, G., Morillon-Chapey, M., Gressier, P. and Schmitt, J., J. Opt. Soc. Am. B 3, 687 (1986).Google Scholar
6. Davies, P.B., Isaacs, N.A., Johnson, S.A. and Russell, D.K., J. Chem. Phys. 83, 2060 (1985).Google Scholar
7. Itabashi, N., Kato, K., Nishiwaki, N., Goto, T., Yamada, C. and Hirota, E., Jpn. J. Appl. Phys. 27, L1565 (1988).Google Scholar
8. Butler, J.E., Bottka, N., Sillmon, R.S. and Gaskill, D.K., J. Cryst. Growth 77, 163 (1986).Google Scholar
9. Celii, F.G., Pehrsson, P.E., Wang, H. and Butler, J.E., Appl. Phys. Lett. 52, 2043 (1988).Google Scholar
10. Meyer, D.E., lanno, N.J., Woollam, J.A., Swartzlander, A.B. and Nelson, A.J., J. Mater. Res. 3, 1397 (1988).Google Scholar
11. Amaratunga, G., Putnis, A., Clay, K. and Milne, W., Appl. Phys. Lett. 55, 634 (1989).Google Scholar
12. Zou, J.W., Reichelt, K., Schmidt, K. and Dischler, B., J. Appl. Phys. 65, 3914 (1989).Google Scholar
13. Mackowski, J.M., Pignard, R., Vedovotto, N., Robert, P. and Donnadieu, A.,Google Scholar
14. Mucha, J.A., Flamm, D.L. and Ibbdtson, D.E., J. Appl. Phys. 65, 3448 (1989).Google Scholar
15. Wagner, J., Wild, C.H., A. Bubenzer and P. Koidl in Plasma Processing, edited by Coburn, J.W., Gottscho, R.A. and Hess, D.W. (Mater. Res. Soc. Proc. 68, Pittsburgh, PA 1986) pp. 205210.Google Scholar
16. Kokubo, T., Tochikubo, F. and Makabe, T., J. Phys. D: Appl. Phys. 22, 1281 (1989).Google Scholar
17. Toyoda, H., Kojima, H. and Sugai, H., Appl. Phys. Lett. 54, 1507 (1989).Google Scholar
18. Kojima, H., Toyoda, H. and Sugai, H., Appl. Phys. Lett. 55, 1292 (1989).Google Scholar
19. Kline, L.E., Partlow, W.D., and Bies, W.E., J. Appl. Phys. 65, 70 (1989).Google Scholar
20. Partlow, W.D. and Kline, L.E. in Plasma Processing, edited by Coburn, J.W., Gottscho, R.A. and Hess, D.W. (Mater. Res. Soc. Proc. 68, Pittsburgh, PA 1986) pp. 309319.Google Scholar
21. Tachibana, K., Nishida, M., Harima, H. and Urano, Y., J. Phys. D: Appl. Phys. 17, 1727 (1984).Google Scholar
22. Herriot, D.R., Kogelnik, H. and Kompfner, R., Appl. Opt. 3, 523 (1964).Google Scholar
23. Wormhoudt, J. and McCurdy, K.E., Chem. Phys. Lett., 156 47 (1989).Google Scholar