Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T07:44:34.628Z Has data issue: false hasContentIssue false

Quasiparticle Excitations in Polyenes and Polyacetylene

Published online by Cambridge University Press:  25 February 2011

Paul Tavan
Affiliation:
Physik-Department, Technische Universität Müinchen, James-Franck-Straβe, D-8046 Garching, Federal Republic of Germany
Klaus Schulten
Affiliation:
Physik-Department, Technische Universität Müinchen, James-Franck-Straβe, D-8046 Garching, Federal Republic of Germany
Get access

Abstract

We apply the Pariser-Parr-Pople Hamiltonian to study many-electron excitations in polyenes and polyacetylene. The excited singlet states of polyenes, calculated by a multireference double excitation expansion, are classified as quasi-particle excitations, namely as triplet-triplet magnons and particle-hole excitons. From finite polyene spectra we derive approximate dispersion relations for these quasi-particles in the infinite polyene, i.e. polyacetylene.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Proceedings of the International Conference on Synthetic Metals 1984 [Mol. Cryst. Liq. Cryst. 117–121 (1985)] and 1986 [Synth. Met. v 17 (1986) ].Google Scholar
[2] Tavan, P. and Schulten, K., J. Chem. Phys. 85 (1986) 6602.CrossRefGoogle Scholar
[3] Tavan, P. and Schulten, K., Phys. Rev. B 36 (1987) 4337.CrossRefGoogle Scholar
[4] Hudson, B., Kohler, B. E., and Schulten, K., in “Excited States ”, vol.6, Lim, E. C., Ed., Academic Press (1982) 1.Google Scholar
[5] Su, W. P., Schrieffet, J. R., and Heeger, A. J., Phys. Rev. Lett. 42 (1979) 1698; Phys. Rev. B22 (1980) 2099, B 28 (1983) 1138.CrossRefGoogle Scholar
[6] Mazumdar, S. and Campbell, D. K., Phys. Rev. Lett. 55 (1985) 2067.CrossRefGoogle Scholar
[7] Harris, R. A. and Falicov, L. M., J. Chem. Phys. 51 (1969) 5034.CrossRefGoogle Scholar
[8] Subbaswami, K. R. and Grabowski, M., Phys. Rev. B 24 (1981) 2168.CrossRefGoogle Scholar
[9] Fukutome, H. and Sasai, M., Progr. Theor. Phys. 69 (1983) 373.CrossRefGoogle Scholar
[10] Kivelson, S. and Heim, D. E., Phys. Rev. B 26 (1982) 4278.CrossRefGoogle Scholar
[11] Horsch, P., Phys. Rev. B 24 (1981) 7351.CrossRefGoogle Scholar
[12] Campbell, D. K., DeGrand, T. A., and Mazumdar, S., Phys. Rev. Lett. 52 (1984) 1717; Mo). Cryst. Liq. Cryst. 118 (1985) 41.CrossRefGoogle Scholar
[13] Hirsch, J. E., Phys. Rev. Lett. 51 (1983) 296.CrossRefGoogle Scholar
[14] Takahashi, M. and Paldus, J., Int. J. Quantum Chem. 28 (1985) 459.CrossRefGoogle Scholar
[15] Dixit, S. N., Mazumdar, S., Phys. Rev. B 29 (1984) 1824.CrossRefGoogle Scholar
[16] Baeriswyl, D. and Maki, K., Phys. Rev. B 31 (1985) 6633.CrossRefGoogle Scholar
[17] Lieb, E. H. and Wu, F. Y., Phys. Rev. Lett. 20 (1968) 1445.CrossRefGoogle Scholar
[18] Ovchinnikov, A. A., Soviet Phys. JETP 30 (1970) 1160.Google Scholar
[19] Woynarovich, F., J. Phys. C: Solid State Phys. 15 (1982) 85; 15 (1982) 97; 16 (1983) 5293.CrossRefGoogle Scholar
[20] Hashimoto, K., Int. J. Quantum Chem. 28 (1985) 581.CrossRefGoogle Scholar
[21] Soos, Z. G. and Ramasesha, S., Phys. Rev. B 29 (1984) 5410.CrossRefGoogle Scholar
[22] Yannoni, C. S. and Clarke, T. C., Phys. Rev. Lett. 51 (1983) 1191.CrossRefGoogle Scholar
[23] Tavan, P. and Schulten, K., J. Chem. Phys. 70 (1979) 5407.CrossRefGoogle Scholar
[24] Tavan, P. and Schulten, K., J. Chem. Phys. 72 (1980) 3547.CrossRefGoogle Scholar