Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T15:38:26.188Z Has data issue: false hasContentIssue false

Quantum Transport in Nanotube-Based Structures

Published online by Cambridge University Press:  15 March 2011

M. Buongiorno Nardelli
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC.
J.-L. Fattebert
Affiliation:
Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, CA.
J. Bernholc
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC.
Get access

Abstract

Using state of the art quantum calculations, we have studied the electronic and transport properties of a variety of nanotube-based structures relevant for the design of nanoscale electronic devices. We have investigated the conductance of carbon nanotubes under mechanica distortions such as bending, defects and tube-tube contacts, and analyzed the behavior of carbon nanotube-metal contacts with the aim of explaining the anomalously large contact resistance observed in nanotube devices. Our results provide a clear interpretation of recent experimenta findings and suggest avenues for the use of carbon nanotubes in electromechanical systems.

Type
Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Iijima, S., Brabec, C., Maiti, A., and Bernholc, J., J. Chem. Phys. 104, 2089 (1996).Google Scholar
[2] obson, B. I. Yak, Brabec, C. J., and Bernholc, J., Phys. Rev. Lett. 76, 2511 (1996).Google Scholar
[3] Falo, M. R. et al., Nature 389, 582 (1997).Google Scholar
[4] Beenakker, C. and Houten, H. van, Solid State Phys. 44, 1 (1991).Google Scholar
[5] Landauer, R., Philos. Mag. 21, 863 (1970).Google Scholar
[6] Tian, W. and Datta, S., Phys. Rev. B 49, 5097 (1994).Google Scholar
[7] Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Phys. Rev. B 53, 2044 (1996).Google Scholar
[8] Chico, L., Benedict, L. X., Louie, S. G., and Cohen, M. L., Phys. Rev. B 54, 2600 (1996).Google Scholar
[9] Tamura, R. and Tsukada, M., Phys. Rev. B 55, 4991 (1997).Google Scholar
[10] Tamura, R. and Tsukada, M., Phys. Rev. B 58, 8120 (1998).Google Scholar
[11] Anantram, M. P. and Govindan, T. R., Phys. Rev. B 58, 4882 (1998).Google Scholar
[12] Datta, S., Electronic transport in mesocopic systems, University Press, Cambridge, 1995.Google Scholar
[13] Ferry, F. and Goodnick, S., Transport in nanostructures, University Press, Cambridge, 1997.Google Scholar
[14] Fisher, D. and Lee, P., Phys. Rev. B 23, 6851 (1981).Google Scholar
[15] Meir, Y. and Wingreen, N., Phys. Rev. Lett. 68, 2512 (1992).Google Scholar
[16] Nardelli, M. Buongiorno and Bernholc, J., Phys. Rev. B 60, R16338 (1998).Google Scholar
[17] Nardelli, M. Buongiorno, Phys. Rev. B 60, 7828 (1999).Google Scholar
[18] Garcia-Moliner, F. and Velasco, V., Phys. Rev. 200, 83 (1991).Google Scholar
[19] Lopez-Sancho, M., Lopez-Sancho, J., and Rubio, J., J. Phys. F: Metal Phys. 14, 1205 (1984).Google Scholar
[20] Lopez-Sancho, M., Lopez-Sancho, J., and Rubio, J., J. Phys. F: Metal Phys. 15, 851 (1985).Google Scholar
[21] Charlier, J. C., Lambin, P., and Ebbesen, T. W., Phys. Rev. B 54, R8377 (1996).Google Scholar
[22] Fattebert, J. L. and Bernholc, J., Phys. Rev. B 62, 1713 (2000).Google Scholar
[23] Bezryadin, A., Verschueren, A. R. M., Tans, S. J., and Dekker, C., Phys. Rev. Lett. 80, 4036 (1998).Google Scholar
[24] Nardelli, M. Buongiorno, Yakobson, B. I., and Bernholc, J., Phys. Rev. B 57, R4277 (1998).Google Scholar
[25] Nardelli, M. Buongiorno, Yakobson, B. I., and Bernholc, J., Phys. Rev. Lett. 81, 4656 (1998).Google Scholar
[26] Crespi, V. H., Cohen, M. L., and Rubio, A., Phys. Rev. Lett. 79, 2093 (1997).Google Scholar
[27] Paulson, S. et a., Appl. Phys. Lett. 75, 2936 (1999).Google Scholar
[28] Tans, S. J., Verschueren, A. R. M., and Dekker, C., Nature 393, 49 (1998).Google Scholar
[29] Tans, S. J. et al., Nature 386, 474 (1997).Google Scholar
[30] Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, P., Appl. Phys. Lett. 73, 2447 (1998).Google Scholar
[31] Bachtold, A. et a., Appl. Phys. Lett. 73, 274 (1998).Google Scholar
[32] Tersoff, J., Appl. Phys. Lett. 74, 2122 (1999).Google Scholar
[33] Nardelli, M. Buongiorno, Fattebert, J.-L., and Bernholc, J., x, Phys. Rev. B., 2001.Google Scholar
[34] Xue, Y. Q. and Datta, S., Phys. Rev. Lett. 83, 4844 (1999).Google Scholar
[35] Wildoer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E., and Dekker, C., Nature 391, 59 (1998).Google Scholar
[36] Rubio, A., Sanchez-Porta, D., Artacho, E., Ordejon, P., and Soler, J. M., Phys. Rev. Lett. 82, 3520 (1999).Google Scholar
[37] Kong, K., Han, S., and Ihm, J., Phys. Rev. B 60, 6074 (1999).Google Scholar
[38] Brandbyge, M., Sorensen, M., and Jacobsen, K., Phys. Rev. B 56, 14956 (1997).Google Scholar
[39] Tersoff, J., Appl. Phys. Lett. 75, 4030 (1999).Google Scholar
[40] Delaney, P., Ventra, M. D., and Pantelides, S. T., Appl. Phys. Lett. 75, 3787 (1999).Google Scholar
[41] Frank, S., Ponchara, P., Wang, Z. L., and Heer, W. A. de, Science 280, 1744 (1998).Google Scholar
[42] Anantram, M. P., Datta, S., and Xue, Y. Q., Phys. Rev. B 61, 14219 (2000).Google Scholar