Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T07:37:38.175Z Has data issue: false hasContentIssue false

Quantitative Two-Dimensional Carrier Mapping in Silicon Nanowire-Based Tunnel-Field Effect Transistors Using Scanning Spreading Resistance Microscopy

Published online by Cambridge University Press:  01 February 2011

Andreas Schulze
Affiliation:
[email protected], IMEC, MCA, Leuven, Belgium
Thomas Hantschel
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Pierre Eyben
Affiliation:
[email protected], IMEC, MCA, Leuven, Belgium
Anne Vandooren
Affiliation:
[email protected], United States
Rita Rooyackers
Affiliation:
[email protected], IMEC, Leuven, Belgium
Jay Mody
Affiliation:
[email protected], IMEC, MCA, Leuven, Belgium
Anne Verhulst
Affiliation:
[email protected], IMEC, Kapeldreef 75, Leuven, B-3001, Belgium
Wilfried Vandervorst
Affiliation:
[email protected], IMEC, MCA, Leuven, Belgium
Get access

Abstract

The successful implementation of silicon nanowire (NW)-based tunnel-field effect transistors (TFET) critically depends on gaining a clear insight into the quantitative carrier distribution inside such devices. Therefore, we have developed a method based on scanning spreading resistance microscopy (SSRM) which allows quantitative two-dimensional (2D) carrier profiling of fully integrated NW-based TFETs with 2 nm spatial resolution. The keys in our process are optimized NW cleaving and polishing steps, in-house fabricated diamond tips with ultra-high resolution, measurements in high-vacuum and a dedicated calibration procedure accounting for dopant dependant carrier mobilities.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Verhulst, A., Vandenberghe, W., Maex, K., De Gendt, S., Heyns, M. and Groeseneken, G., Electron Device Letters, IEEE 29, 13981401 (2008).Google Scholar
2. Vinaji, S., Lochthofen, A., Mertin, W., Regolin, I., Gutsche, C., Prost, W., Tegude, F.J. and Bacher, G., Nanotechnology 20, 385702 (2009).Google Scholar
3. Allen, J.E., Perea, D.E., Hemesath, E.R. and Lauhon, L.J., Advanced Materials 21, 30673072 (2009).Google Scholar
4. Xie, P., Hu, Y., Fang, Y., Huang, J. and Lieber, C.M., Proceedings of the National Academy of Sciences 106, 1525415258 (2009).Google Scholar
5. den Hertog, M.I., Schmid, H., Cooper, D., Rouviere, J., Bjork, M.T., Riel, H., Rivallin, P., Karg, S. and Riess, W., Nano Letters 9, 38373843 (2009).Google Scholar
6. Eyben, P., Janssens, T. and Vandervorst, W., Materials Science and Engineering: B 124–125, 4553 (2005).Google Scholar
7. Zhang, Li, Tanimoto, H., Adachi, K. and Nishiyama, A., Electron Device Letters, IEEE 29, 799801 (2008).Google Scholar
8. Hantschel, T., Schulz, V., Schulze, A., Angeletti, E., Guder, F., Schmidt, V., Senz, S., Eyben, P. and Vandervorst, W., in Proc. MRS Spring Meeting (San Francisco, 2009).Google Scholar
9. Ou, X., Kanungo, P.D., Kogler, R., Werner, P., Gosele, U., Skorupa, W. and Wang, X., Nano Letters 10, 171175 (2010).Google Scholar
10. Vandooren, A., Rooyackers, R., Leonelli, D., Iacopi, F., Kunnen, E., Nguyen, D., Demand, M., Ong, P., Willie, L., Moonens, J., Richard, O., Verhulst, A.S., Vandenberghe, W.G., Groeseneken, G., De Gendt, S. and Heyns, M., in Proc. Silicon Nanoelectronics Workshop (Kyoto, 2009), p. 21.Google Scholar
11. Hantschel, T., Demeulemeester, C., Eyben, P., Schulz, V., Richard, O., Bender, H. and Vandervorst, W., Physica Status Solidi (a) 206, 20772081 (2009).Google Scholar
12. Mylvaganam, K., Zhang, L., Eyben, P., Mody, J. and Vandervorst, W., Nanotechnology 20, 305705 (2009).Google Scholar
13. Eyben, P., Vandervorst, W., Alvarez, D., Xu, M.W. and Fouchier, M., in Scanning Probe Microscopy (Springer), pp. 3187.Google Scholar
14. De Wolf, P., Snauwaert, J., Clarysse, T., Vandervorst, W. and Hellemans, L., Appl. Phys. Lett. 66, 1530 (1995).Google Scholar
15. Maknys, K., Douhéret, O. and Anand, S., Appl. Phys. Lett. 83, 2184 (2003).Google Scholar
16. Eyben, P., Xu, M., Duhayon, N., Clarysse, T., Callewaert, S. and Vandervorst, W., Journal of Vacuum Science & Technology B 20, 471478 (2002).Google Scholar