Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T09:42:34.659Z Has data issue: false hasContentIssue false

Prospects for Monolithic GaAs/Si Integration

Published online by Cambridge University Press:  28 February 2011

H. K. Choi
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173–0073
G. W. Turner
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173–0073
B-Y. Tsaur
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, Massachusetts 02173–0073
Get access

Abstract

The status of monolithic GaAs/Si (MGS) integration is reviewed and its future prospects are discussed. The MGS material now available is satisfactory for majority-carrier devices, but improvement in quality is needed for minority-carrier devices. By using a suitable sequence of processing steps, fabrication of GaAs MESFETs and Si MOSFETs on the same wafer and monolithic integration of GaAs/AlGaAs double-heterostructure LEDs and Si MOSFETs have been achieved. The GaAs and Si FETs show characteristics comparable to those for devices fabricated on separate GaAs and Si substrates. The LEDs have been modulated up to 27 Mb/s by applying a pattern of voltage pulses to the MOSFET gate. Two promising applications of MGS integration are optical interconnects between Si VLSI chips and monolithic microwave integrated circuits. Much better performance should be obtained by operating MGS ICs at liquid nitrogen temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shichijo, H., Tran, L. T., Matyi, R. J., and Lee, J. W., Proceedings of this conference.Google Scholar
2. Soga, T., Hattori, S., Sakai, S., Takeyasu, M., and Umeno, M., Electron. Lett. 20, 917 (1984).Google Scholar
3. Lee, J. W., 13th Int. Sym. GaAs and Related Compounds, paper H-7, Las Vegas, Nevada (1986).Google Scholar
4. Zemon, S., Jagannath, C., Koteles, E., Shastry, S., Norris, P., and Lambert, G., 13th Int. Sym. GaAs and Related Compounds, paper H-7, Las Vegas, Nevada (1986), paper K-3.Google Scholar
5. Lee, J. W., Mater. Res. Soc. Sym. Proc. 67, 29 (1986).Google Scholar
6. Choi, H. K., Turner, G. W., and Tsaur, B-y., IEEE Electron Dev. Lett. EDL–7, 241 (1986).Google Scholar
7. Morkoc, H., Peng, C. K., Henderson, T., Kopp, W., and Fischer, R., IEEE Electron Dev. Lett. EDL–6, 381 (1985).Google Scholar
8. Nonaka, T., Akiyama, M., Kawarada, Y., and Kaminishi, K., Jpn. J. Appl. Phys. 23, L919 (1984).Google Scholar
9. Fischer, R., Henderson, T., Klem, J., Masselink, W. T., Kopp, W., and Morkoc, H., Electron. Lett. 20, 945 (1984).Google Scholar
10. Miyazawa, S. and Hyuga, F., IEEE Trans. Electron Dev. ED–33, 277 (1986).Google Scholar
11. Ishii, Y., Miyazawa, S., and Ishida, S., IEEE Trans. Electron Dev. ED–31, 800 (1984).Google Scholar
12. Anholt, R. and Sigmon, T. W., IEEE Electron Dev. Lett. EDL–8, 16 (1987).Google Scholar
13. Tran, L. T., Lee, J. W., Shichijo, H., and Yuan, H. T., IEEE Electron Dev. Lett. EDL–8, 50 (1987).Google Scholar
14. Roedel, R. J., Von Neida, A. R., Caruso, R., and Dawson, L. R., J. Electrochem. Soc. 126, 637 (1979).Google Scholar
15. Lang, D. V. and Kimerling, L. C., Phys. Rev. Lett. 33, 489 (1974).Google Scholar
16. Windhorn, T. H., Turner, G. W., and Metze, G. M., Mater. Res. Soc. Sym. Proc. 67, 157 (1986).Google Scholar
17. Fischer, R., Kopp, W., Morkoc, H., Pion, M., Specht, A., Burkhart, G., Appelman, H., McGongan, D., and Rice, R., Appl. Phys. Lett. 48, 1360 (1986).Google Scholar
18. Shiraishi, H., Yamada, R., Matsui, N., and Umeno, M., Jpn. J. Appl. Phys. 26, L198 (1987).Google Scholar
19. van der Ziel, J. P., Dupuis, R. D., Logan, R. A., Mikulyak, R. M., Pinzone, C. J., and Savage, A., Appl. Phys. Lett. 50, 454 (1987).Google Scholar
20. Turner, G. W., Diadiuk, V., Le, H. Q., Choi, H. K., Metze, G. M., and Tsaur, B-y., Mater. Res. Soc. Sym. Proc. 67, 181 (1986).Google Scholar
21. Choi, H. K., Turner, G. W., Windhorn, T. H., and Tsaur, B-y., IEEE Electron Dev. Lett. EDL–7, 500 (1986).Google Scholar
22. Murarka, S. R., Silicides for VLSI Applications (Academic Press, New York, 1983).Google Scholar
23. Tokumitsu, E., Kudou, Y., Konagai, M., and Takahashi, K., J. Appl. Phys. 55, 3163 (1984).Google Scholar
24. Kamon, K.. Takagishi, S., and Mori, H., J. Cryst. Growth 73, 73 (1985).Google Scholar
25. Heinecke, H., Brauers, A., Grafahrend, F., Pless, C., Putz, N., Werner, K., Weyers, M., Luth, H., and Balk, P., J. Cryst. Growth 77, 303 (1986).Google Scholar
26. Kamon, K., Shimazu, M., Kimura, K., Mihara, M., and Ishii, M., J. Cryst. Growth 77, 297 (1986).Google Scholar
27. Ning, T. H., J. Appl. Phys. 49, 4077 (1978).Google Scholar
28. Ohnishi, T., Yokoyama, N., Onodera, H., Suzuki, S., and Shibatomi, A., Appl. Phys. Lett. 43, 600 (1983).Google Scholar
29. Zuleeg, R., Friebertshauser, P. E., Stephens, J. M., and Watanabe, S. H., IEEE Electron Dev. Lett. EDL–7, 603 (1986).Google Scholar
30. Tiwari, S., Kuan, T. S., and Tierney, E., IEEE International Electron Devices Meeting, Tech. Dig. p. 115 (1985).Google Scholar
31. Ikeda, T., Nagano, T., Momma, N., Miyata, K., Higuchi, H., Odaka, M., and Ogiue, K., IEEE International Electron Devices Meeting, Tech. Dig. p. 408 (1986).Google Scholar
32. Hori, R., Kitsukawa, G., Kawajiri, Y., Watanabe, T., Kawahara, T., and Itoh, K., IEEE Int. Sol. St. Circuit. Conf. paper FAM 20.6 (1987).Google Scholar
33. Miyaoka, S., Odaka, M., Ogiue, K., Ikeda, T., Suzuki, M., Higuchi, H., and Hirao, M., IEEE Int. Sol. St. Circuit. Conf. paper FAM 20.6, paper THAM 11.2.Google Scholar
34. Goodwin, A. R., Kirkby, P. A., Davies, I. G. A., and Baulcomb, R. S., Appl. Phys. Lett. 34, 647 (1979).Google Scholar
35. See Special Issue on Low-Temperature Semiconductor Electronics, IEEE Trans. Electron Dev. ED–34, Jan. (1987).Google Scholar
36. Aksun, M. I., Morkoq, H., Easter, L. F., Duh, K. H. G., Smith, P. M., Chao, P. C., Longerbone, M., and Erikson, L. P., Appl. Phys. Lett. 49, 1654 (1986).Google Scholar
37. Buechler, J., Kasper, E., Russer, P., and Strohm, K. M., IEEE Trans. Electron Dev. ED–33, 2047 (1986).Google Scholar
38. Chen, C. L., unpublished.Google Scholar