Article contents
Photon and Ion Beam-Induced Chemistry of Palladium Acetate Films
Published online by Cambridge University Press: 28 February 2011
Abstract
Electrically conducting palladium features have been produced by laser and ion beam irradiation of thin palladium acetate films. The photothermal reaction induced by scanned continuous wave Ar+ laser irradiation leads to metal lines that may exhibit periodic structure. This results from repeated propagation of “explosive” reaction fronts generated by coupling of the heat from the absorbed laser radiation with the heat of the decomposition reaction of the film. In contrast, 2 MeV He+ ion irradiation produces smooth metallic-looking features that contain up to 20% of the original carbon and 5% of the original oxygen content of the film. Films irradiated with 2 MeV Ne+ ions contain slightly lower amounts of carbon and oxygen residues, but fully exposed thick films (0.90 μm) appear black rather than metallic silver. In addition to having significantly higher purity, the laser-written features have lower resistivities than the ion beam-irradiated features. Infrared spectroscopy of the ion beam-irradiated films as a function of dose indicates a progressive loss in intensity of the characteristics acetate (COO-) vibrations. This occurs at doses lower than those associated with major C and O loss from the films. Partially ion-exposed films continue to decompose to metallic-looking material over a period of weeks after irradiation. Metallic palladium particles apparently catalyze this process.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 1987
References
- 8
- Cited by