Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T07:43:24.051Z Has data issue: false hasContentIssue false

Photoluminescence measurement of sidewall damage in etched InGaAsP/lnP and GaAs/AIGaAs microstructures

Published online by Cambridge University Press:  26 February 2011

P. Grabbe
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040
A. Scherer
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040
K. Kash
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040
R. Bhat
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040
J. Harbison
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040
L. Florez
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040
M. Koza
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701–7040
Get access

Abstract

We report the first investigation of the effect of dry etching parameters on the sidewall carrier recombination rate of GaAs/AIGaAs and lnPilnGaAsP microstructures. Surface recombination was measured as a function of ion voltage and etching time. The increase in recombination rate due to etching can be reversed by subsequent chemical removal of the immediate sidewall layer. By monitoring the recovery in recombination rate as a function of the amount of sidewall layer removed, the effective damage depth is inferred.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Sanada, T., Kuno, M., and Wada, O.: Jpn. J. Appl. Phys. 25, 1443 (1986).Google Scholar
[2] Bouadma, N., Ilogrel, J.F., Charil, J., and Carre, M.: IEEE J. Quantum Electron. QE–23, 909 (1987).Google Scholar
[3] Jewell, J.I, Scherer, A., McCall, S.I,., Gossard, A.C., and J.H. English: Appi. Phys. Lett. 51, 94 (1987).Google Scholar
[4] Ghandhi, S.K., Kwan, P., Bhat, K.N., Borrego, J.M.: IEEE Electron Device Lett. EDL–3, 48 (1982).Google Scholar
[5] Pang, S.W., lincoln, G.A., McClelland, R.W., DeGraff, P.D., Geis, M.W., and Piacentini, W.I.: J.Vac. Sci. Tech. B 1, 1334 (1983).Google Scholar
[6] Wang, Y.X. and Holloway, P.H.: J. Vac. Sci. Tech. B 2, 613 (1984).Google Scholar
[7] Fonash, S.J.: Solid State Technology, p. 201, April 1985.Google Scholar
[8] Adachi, S. and Susa, N.: J. Electrochem. Soc. 132, 2980 (1985).Google Scholar
[9] Scherer, A., Craighead, H.G., Roukes, M.L., and Harbison, J.P.: J. Vac. Sci. Tech. B 6, 277 (1988).CrossRefGoogle Scholar
[10] Kawabc, M., Kanzaki, N., Masuda, K., and Namba, S.: Applied Optics 17, 2556 (1978).Google Scholar
[11] Susa, N.: J. Electrochem. Soc. 132, 2762 (1985).Google Scholar
[12] Gershoni, D., Temkin, H., Dolan, G.J., Dunsmuir, J., Chu, S.N.G., and Panish, M.B.: Appl. Phys. Lett. 53, 995 (1988).Google Scholar
[13] Pang, S.W., Geis, M.W., Efremow, N.N., and Lincoln, G.A.: J. Vac. Sci. Tech. B 3, 398 (1985).Google Scholar
[14] Pearton, S.J., Ilaller, E.E., and Elliot, A.G.: Appl. Phys. Lett. 44, 684 (1984).Google Scholar
[15] Pang, S.: J. Electrochem. Soc. 133, 784 (1986).Google Scholar
[16] Matthews, J.C. and Willmott, J.I. Jr: SPIE Conf. Opt. Microlith. III, Santa Clara, CA, March 14–15 (1984).Google Scholar