Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-16T08:15:27.312Z Has data issue: false hasContentIssue false

Pattern Selection of Surface-based Nanostructures

Published online by Cambridge University Press:  17 March 2011

E. G. Wang
Affiliation:
Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China International Center for Quantum Structures, CAS, Beijing, P. R. China
B. G. Liu
Affiliation:
Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China
J. Wu
Affiliation:
Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China
W. G. Zhu
Affiliation:
Institute of Physics and Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100080, P. R. China
Z. Zhang
Affiliation:
International Center for Quantum Structures, CAS, Beijing, P. R. China Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Get access

Abstract

A rich variety of two-dimensional patterns can be formed in the early stages of film growth. In this paper, we will show that, when a surfactant layer is used to mediate the growth, a counter-intuitive fractal-to-compact island shape transition can be induced by increasing deposition flux or decreasing growth temperature. Specifically, we introduce a reaction limited aggregation (RLA) theory, where the physical process controlling the island shape transition is the shielding effect of adatoms stuck to stable islands on incoming adatoms. Also discussed is the origin of a transition of compact islands from triangular to hexagonal then to inverted triangular in Pt (111) homoepitaxy with the presence of CO adsorbates. We will provide a coherent and unified picture for the interpretation of these intriguing observations based on kinetic Monte Carlo simulations, with energy barriers from first-principles calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Copel, M., Reuter, M.C., Kaxiras, E., and Tromp, R.M., Phys. Rev. Lett. 63, 632 (1989).Google Scholar
2.Kandel, D. and Kaxiras, E., The Surfactant Effect in Semiconductor Thin Film Growth, cond-mat/9901177.Google Scholar
3.Kaxiras, E., Thin Solid Films 272, 386 (1996).Google Scholar
4.Kandel, D., Phys. Rev. Lett. 78, 499 (1997).Google Scholar
5.Zhang, Z. and Lagally, M.G., Phys. Rev. Lett. 72, 693 (1994).Google Scholar
6.Kandel, D., Kaxiras, E., Phys. Rev. Lett. 75, 2742 (1995).Google Scholar
7.Hwang, I.-S., Chang, T.-C., and Tsong, T.T., Phys. Rev. Lett. 80, 4229 (1998).Google Scholar
8.Liu, B.G., Wu, J., Wang, E.G., and Zhang, Z.Y., Phys. Rev. Lett. 83, 1995 (1999).Google Scholar
9.Wu, J., Liu, B.G., Zhang, Z.Y., and Wang, E.G., Phys. Rev. B61, 13212 (2000).Google Scholar
10.Markov, I., Phys. Rev. B50, 11271 (1994).Google Scholar
11.Kandel, D. and Kaxiras, E., Phys. Rev. Lett. 75, 2742 (1995).Google Scholar
12.Michely, T., Hohage, M., Bott, M., and Comsa, G., Phys. Rev. Lett. 70, 3943 (1993).Google Scholar
13.Kalff, M., Comsa, G., and Michely, T., Phys. Rev. Lett. 81, 1255 (1998).Google Scholar
14.Feibelman, P. J., Phys. Rev. B60, 4972 (1999).Google Scholar
15.Collins, D. M. and Spicer, W. E., Sur. Sci. 69, 85 (1977).Google Scholar
16.McClellan, M. R., Gland, J. L., and McFeeley, F. R., Surf. Sci. 112, 63 (1981).Google Scholar
17.Wu, J., Wang, E. G., Liu, B. G., and Zhang, Z. Y., Phys. Rev. Lett. (to be published).Google Scholar