Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T05:10:11.905Z Has data issue: false hasContentIssue false

Particle Size Dependent Magnetoresistance And Magnetothermoelectric Power Of La0.5Pb0.5MnO3 Showing Metal-Insulator Transition

Published online by Cambridge University Press:  01 February 2011

Aritra Banerjee
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Kolkata-700 032, INDIA
S Pal
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Kolkata-700 032, INDIA
B K Chaudhuri
Affiliation:
Solid State Physics Department, Indian Association for the Cultivation of Science, Kolkata-700 032, INDIA
Get access

Abstract

Particle size dependent transport properties (resistivity and thermopower) of La0.5Pb0.5MnO3 has been investigated both in presence and in absence of magnetic field B=0.0-1.5T (maximum). All the samples show metal-insulator transition (MIT) with a peak at the MIT temperature (Tp). Magnetic field decreases the resistivity with an increase in the peak temperature Tp. Particle size, conductivity and Tp of the sample increase with increasing annealing time. High temperature semiconducting (insulating) part of the resistivity curve is divided into two distinct regimes. Resistivity data for T>qθ/2, can be well fitted with the nearest neighbor small polaron hopping (SPH) model. Polaron hopping energy (WH) decreases with increase of particle size. The lower temperature part (Tp>T>qθ/2) of the semiconducting (insulating) regime is found to follow variable range hopping (VRH) model. With the increase of particle size, the temperature range of validity of the VRH mechanism decreases. The low temperature metallic regime (for T<Tp) of the resistivity (both in absence and in presence of field) data fit well with ρ = ρ0 +ρ2.5 T2.5 and transport mechanism in this region is mainly dominated by magnon-carrier scattering (∼T2.5). Particle size has, however, comparatively little effect on Seebeck coefficient (S). In all the samples with different particle sizes, S changes sign below Tp. In contrast to magnetoresistance, application of magnetic field increases S at low temperature (T<Tp) for these samples. Similar to the resistivity results, thermopower data in the metallic phase (both for B=0.0 and 1.5T) can also be analyzed by considering magnon-scattering term along with an additional spin-wave fluctuation term (∼T4).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 McCormack, M., Jin, S., Tiefel, T. H., Fleming, R. M., Phillips, J. M. and Ramesh, R.; Appl. Phys. Lett. 64, 3045 (1994).Google Scholar
2 Zener, C., Phys. Rev. 82, 403 (1951).Google Scholar
3 Millis, A. J., Littlewood, P. B., Shraiman, B. I., Phys. Rev. Lett 74, 5144 (1995).Google Scholar
4 Mahesh, R., Mahendiran, R., RayChaudhuri, A. K., Rao, C. N. R., Appl. Phys. Lett. 68, 2291 (1996).Google Scholar
5 Mahendiran, R., Mahesh, R., RayChaudhuri, A. K., Rao, C. N. R., Solid State Comm. 99, 149 (1996).Google Scholar
6 Gupta, A. et.al, Phys. Rev. B 54, R15629 (1996).Google Scholar
7 Banerjee, Aritra, Pal, S., and Chaudhuri, B. K., J. Chemical Physics 115, 1550 (2001).Google Scholar
8 Banerjee, Aritra, Pal, S., Bhattacharya, S., Chaudhuri, B. K. and Yang, H. D., Phys. Rev. B 64, 104428 (2001); Sudipta Pal, Aritra Banerjee, E. Rozenberg and B. K., Chaudhuri, J. Appl. Phys. 89, 4955 (2001).Google Scholar
9 Zhang, N., Yang, W., Ding, W., Xing, D., Du, Y., Solid State Comm. 109, 537 (1999).Google Scholar
10 Snyder, G. Jeffrey, Hiskes, R., DiCarolis, S., Beasley, M. R., Geballe, T. H., Phys. Rev. B 53, 14434 (1996).Google Scholar
11 Pi, L., Zheng, L., Zhang, Y., Phys. Rev. B 61, 8917 (2000).Google Scholar
12 Teresa, J. M. De, Ibarra, M. R., Blasco, J. et. al., Phys. Rev. B 54, 1187 (1996).Google Scholar
13 Urushibara, A., Morotimo, Y., Arima, T. et. al., Phys. Rev. B 51, 14103 (1995).Google Scholar
14 Schiffer, P., Ramirez, A. P., Bao, W., Cheong, S-W., Phys. Rev. lett. 75, 3336 (1995).Google Scholar
15 Mott, N. F. and Davis, E. A., in “Electronics process in non crystalline materials”, Clarendon press, Oxford, 1971.Google Scholar
16 Mahendiran, R., Tiwary, S. K., RayChaudhuri, A. K., Ramakrishnan, T. V., Mahesh, R., Rangavittal, N., Rao, C. N. R., Phys. Rev. B 53, 3348 (1996).Google Scholar
17 Mandal, P., Phys. Rev. B 61, 14675 (2000).Google Scholar
18 Chatterjee, S., Chou, P. H., Chang, C. F., Hong, I. P., Yang, H. D., Phys. Rev. B. 61 6106 (2000).Google Scholar
19 Sega, K., Kuroda, Y., Sakata, H., J. Material Science 33, 1303 (1998).Google Scholar