Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T06:06:14.474Z Has data issue: false hasContentIssue false

Oriented Growth of Model Molecules of Polyethylene and Poly(tetrafluoroethylene) (n-C44H90 and n-C24F50) and Angle-resolved UPS Study of Their Intramolecular Energy Band Dispersion (E=E(k)) Relation

Published online by Cambridge University Press:  11 February 2011

Daisuke Yoshimura
Affiliation:
Research Center for Materials Science, Nagoya University, Furocho, Chikusa-ku, Nagoya 464–8602, Japan
Takayuki Miyamae
Affiliation:
Advanced Institute of Science and Technology
Sinji Hasegawa
Affiliation:
Institute for Molecular Science, Okazaki 444–8585, Japan
Yukinobu Hosoi
Affiliation:
Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya 464–8602, Japan
Yoko Sakurai
Affiliation:
Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya 464–8602, Japan
Masato Yamamoto
Affiliation:
Department of Chemistry, College of Arts and Sciences, Showa University, 1–5–8 Hatanodai, Shinagawa-ku, Tokyo, 142–8555, Japan
Hisao Ishii
Affiliation:
Research Institute of Electrical Communication, Katahira, Aoba-ku, Sendai 980–8577, Japan
Yukio Ouchi
Affiliation:
Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya 464–8602, Japan
Nobuo Ueno
Affiliation:
Department of Materials Engineering, Faculty of Engineering, Chiba University, Yayoicho, Inage-ku, Chiba 263–8522, Japan
Kazuhiko Seki
Affiliation:
Research Center for Materials Science, Nagoya University, Furocho, Chikusa-ku, Nagoya 464–8602, Japan
Get access

Abstract

We report on the recent progress of our continued effort for the preparation and characterization of well oriented films of tetratetracontane (n-C44H90) and perfluorotetracosane (n-C24F50), which are good model molecules of fundamental polymers, polyethylene (CH2)n and poly(tetrafluoroethylen) (CF2)n, vacuum-deposited on metal surfaces. When the surface of the metal substrate was oxidized, the deposited chain molecules are aligned with their molecular axes vertically standing on the surface, while they lie flat on the surface when atomically clean Cu(100) surface was used. In the case of n-C44H90 on Cu (100), low-energy electron diffraction (LEED) studies revealed that the molecules were also azimuthally aligned with the chain axis almost parallel with the <100> and <010> axis, and infrared reflection-absorption spectroscopy (IR-RAS) enabled detailed studies of the film structure at increasing film thickness._By applying the technique of angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) to these flat-lying molecules, the intramolecular energy-band dispersion relation could be determined, The results agreed well with the results deduced from the previous work using vertically standing molecules assuming an inner potential V0. of –5 eV, confirming the validity of the estimation of V0. Excellent agreement was found between the observed and simulated spectra using the independent-atomic-center (IAC) approximation. Also the value of the vacuum level shift by molecular deposition was deduced for TTC/Cu(100) system to be – 0.3 eV. As for n-C24F50, the E(k) relation deduced in our previous study using vertically standing molecules showed discrepancy with band calculations. The detailed reexamination of the experimental data using IAC calculations for the previous report gave more realistic estimation of V0, and the newly deduced E(k) relation using this data showed good correspondence with theoretical band calculations, thus removing the difficulty in the previous work.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seki, K., Hashimoto, S., Sato, N., Harada, Y., Ishii, K., Inokuchi, H., and Kanbe, J., J. Chem. Phys., 66, 3644 (1977).CrossRefGoogle Scholar
2. Seki, K. and Inokuchi, H., Chem. Phys. Lett., 89, 268 (1982).CrossRefGoogle Scholar
3. Seki, K., Karlsson, U., Engelhardt, R., and Koch, E. E., Chme. Phys., Lett., 103, 343 (1984).CrossRefGoogle Scholar
4. Seki, K., Ueno, N., Karlsson, U. O., Engelhardt, R., and Koch, E. E., Chem. Phys., 105, 247 (1986).CrossRefGoogle Scholar
5. Ueno, N., Gädeke, W., Koch, E. E., Engelhardt, R., Dudde, R., Laxhuber, L., and Möwald, H., J. Mol. Electron., 1, 19 (1985),Google Scholar
6. Ueno, N., Seki, K., Sato, N., Fujimoto, H., Kuramochi, T., Sugita, K., and Inokuchi, H., Phys. Rev. B41, 1176 (1990).CrossRefGoogle Scholar
7. Fujimoto, H., Mori, T., Inokuchi, H., ueno, N., Sugita, K., and Seki, K., Chem. Phys. Lett., 141, 485 (1987).CrossRefGoogle Scholar
8. Jäger, H., Schürmann, H., Müller, H. U., Himmel, H. J., Neumann, M., Grunze, M., and Wöll, Ch., Z. Phys. Chem., 202, 263 (1997).CrossRefGoogle Scholar
9. Seki, K., Tanaka, H., Ohta, T., Aoki, Y., Imamura, A., Fujimoto, H., Yamamoto, H., and Inokuchi, H., Phys. Scripta, 41. 167 (1990).CrossRefGoogle Scholar
10. Nagayama, K., Mitsumoto, R., Araki, T., Ouchi, Y., and Seki, K., Physica B208/209, 419 (1995).CrossRefGoogle Scholar
11. Nagayama, K., Miyamae, T., Mitsumoto, R., Ishii, H., Ouchi, Y., and Seki, K., J. Electron Spectrosc. Rel. Phenom., 78, 407 (1996).CrossRefGoogle Scholar
12. Miyamae, T., Hasegawa, S., Yoshimura, D., Ishii, H., Ueno, N., and Seki, K., J. Chem. Phys., 112, 3333 (2000).CrossRefGoogle Scholar
13. Ziegler, Ch., Schedel-Niedrig, Th., eamson, G., Clark, D. T., Salaneck, W. R., Sotobayashi, H., and Bradshow, A. M., Langmuir, 10, 4399 (1994).Google Scholar
14. Narioka, S., Ishii, H., Edamatsu, K., Kamiya, K., Hasegawa, S., Ohta, T., Ueno, N., and Seki, K., Phys. Rev. B52, 2362 (1995).CrossRefGoogle Scholar
15. Sch¨rmann, H., Koch, N., Vollmer, A., Schrader, S., and Neumann, M., Synth. Metals, 111/112, 591 (2000).CrossRefGoogle Scholar
16. Yoshimura, D., Ishii, H., Ouchi, Y., Ito, E., Miyamae, T., Hasegawa, S., Kamiya-Okudaira, K., Ueno, N., and Seki, K., Phys. Rev. B60, 9046 (1999).CrossRefGoogle Scholar
17. Hosoi, Y., Sakurai, Y., Yamamoto, M., Ishii, H., Ouchi, Y., and Seki, K., Surf. Sci., in press.Google Scholar
18. Hosoi, Y., Sakurai, Y., Yamamoto, M., Ishii, H., Ouchi, Y., and Seki, K., Appl. Surf. Sci., in press.Google Scholar
19. Grobman, W. D., Phys. Rev. B17, 4573 (1978).CrossRefGoogle Scholar
20. Yamamoto, M., Sakurai, Y., Hosoi, Y., Ishii, H., Kajikawa, K., Ouchi, Y., and Seki, K., J. Phys. Chem., B104, 7370 (2000).CrossRefGoogle Scholar
21. Yamamoto, M., Sakurai, Y., Hosoi, Y., Ishii, H., Ito, E., Kajikawa, K., Ouchi, Y., and Seki, K., J. Phys. Chem., B104, 7363 (2000).Google Scholar
22.Angle-Resolved Photoemission – Theory and Current Applications”, edited by Kevan, S. D. (Elsevier, Amsterdam, 1992).Google Scholar
23. Karpfen, A., J. Chem. Phys., 75, 238 (1981).CrossRefGoogle Scholar
24. Hasegawa, S., Miyamae, T., Yakushi, K., Inokuchi, H., Seki, K., and Ueno, N., Phys. Rev. B58, 4927 (1998).CrossRefGoogle Scholar
25. Ishii, H., Morikawa, E., Tang, S. J., Yoshimura, D., Ito, E., Okudaira, K.-K., Miyamae, T., Hasegawa, S., Sprunger, P. T., Ueno, aN., Seki, K., and Saile, V., J. Electron Spectrosc. Rel. Phenom., 101–103, 559 (1999).CrossRefGoogle Scholar
26. Ito, E., Oji, H., Ishii, H., Oichi, K., Ouchi, Y., and Seki, K., Chem. Phys. Lett., 287, 137 (1998).CrossRefGoogle Scholar
27. Yoshimura, D., Ishii, H., Ouchi, Y., Miyamae, T., Kamiya Okudaira, K., Ueno, N., and Seki, K., in preparation.Google Scholar
28. Springborg, M. and Lev, M., Phys. Rev., B40, 3333 (1989).Google Scholar