Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T04:12:46.628Z Has data issue: false hasContentIssue false

Order To Disorder Transition at The Polymer-Air Interface for Hydrophobic Octadecyl Side Chain Copolymers

Published online by Cambridge University Press:  21 March 2011

Keshav S. Gautam
Affiliation:
Department of Polymer Science, University of Akron, Akron, OH 44325, USA
Ali Dhinojwala
Affiliation:
Department of Polymer Science, University of Akron, Akron, OH 44325, USA
Get access

Abstract

Molecular orientation of octadecyl alkyl side chains at the poly (vinyl octadecyl carbamates-co-vinyl acetate) polymer-air interface has been studied using surface sensitive sum frequency generation (SFG) spectroscopy. At 280C, below the side chain crystalline transition temperature, the SFG spectra show strong methyl vibrations indicating ordered alkyl side chains at the polymer-air interface. In the liquid state (980C), the SFG spectra show higher contributions from the methylene vibrations indicating higher gauche defects at the interface. This surface order to disorder transition is gradual and spans over a broad temperature range (50-900C), where the bulk is in the smectic liquid crystalline state.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Langmuir, I. In The Collected Works of Irving Langmuir; Suits, G.C., Ed.; Pergamon Press: New York, 1960–62; Vol. 9.Google Scholar
2) Plate, N.A. and Shibaev, V.P., J. Polymer Sci.: Macromolecular Reviews. 8, 117 (1974).Google Scholar
3) Kinning, D. J., J. Adhesion, 60, 249 (1997).Google Scholar
4) Satas, D. In Handbook of Pressure Sensitive Adhesives; Nostrand, V., Ed.; Reinhold: New York, 585 (1989).Google Scholar
5) Crevoisier, G., Fabre, P., Corpart, J M., Leibler, L., Science, 285, 1246 (1999).Google Scholar
6) Wang, J., Ober, C. K., Macromolecules, 30, 7560 (1997).Google Scholar
7) Dessipri, E., Tirrell, D.A., E.Atkins, D.T., Macromolecules, 29, 3545 (1996).Google Scholar
8) Hester, J. F., Banerjee, P., Mayes, A. M., Macromolecules, 32, 1643 (1999).Google Scholar
9) Genzer, J., Sivaniah, E., Kramer, E. J., Wang, J., Körner, H., Xiang, M-L., Yang, S., Ober, C. K., Char, K., Chaudhury, M. K., Dekoven, M., Bubeck, R.A., Fischer, D.A., Sambasivan, S., Mat. Res.Soc. Symp. Proc., 524, 365 (1998).Google Scholar
10) Gautam, K. S., Dhinojwala, A., Macromolecules, (2001) in pressGoogle Scholar
11) Shen, Y. R., Nature, 337, 519 (1989).Google Scholar
12) Akamatsu, N., Domen, K., Hirose, C., J. Phys.Chem., 97, 10070 (1993).Google Scholar
13) Hirose, C., Akamatsu, N., Domen, K., J. Chem. Phys., 96, 997 (1992).Google Scholar
14) Watanabe, N., Yamamoto, H., Wada, A., Domen, K., Hirose, C., Ohtake, T., Mino, N., Spectrochemica Acta., 50A, 1529 (1994).Google Scholar
15) Zhuang, X., Miranda, P. B., Kim, D., Shen, Y. R., Phys. Rev. B., 59, 12632 (1999).Google Scholar
16) Bell, G. R., Bain, C. D., Ward, R. N., J. Chem. Soc. Faraday Trans., 92, 515 (1996).Google Scholar
17) Kim, Y., Strauss, H.L., Snyder, R.G., J. Phys. Chem., 93, 7520 (1989).Google Scholar
18) Ocko, B.M., Wu, X.Z., Sirota, E.B., Sinha, S.K., Gang, O. and Deutsch, M., Phy. Rev. B., 55, 3164 (1997).Google Scholar