Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T07:47:18.075Z Has data issue: false hasContentIssue false

Optical Studies of Artificial Opals as 3D Photonic Crystals

Published online by Cambridge University Press:  15 March 2011

D. Comoretto
Affiliation:
INFM - Dipartimento di Chimica e Chimica Industriale, Università di Genova, Italy
D. Cavallo
Affiliation:
INFM - Dipartimento di Chimica e Chimica Industriale, Università di Genova, Italy
G. Dellepiane
Affiliation:
INFM - Dipartimento di Chimica e Chimica Industriale, Università di Genova, Italy
R. Grassi
Affiliation:
INFM - Dipartimento di Fisica “A. Volta”, Università di Pavia, Italy
F. Marabelli
Affiliation:
INFM - Dipartimento di Fisica “A. Volta”, Università di Pavia, Italy
L.C. Andreani
Affiliation:
INFM - Dipartimento di Fisica “A. Volta”, Università di Pavia, Italy
C.J. Brabec
Affiliation:
Christian Doppler Laboratory for Plastic Solar Cells, J. Kepler University Linz, Austria
A. Andreev
Affiliation:
Christian Doppler Laboratory for Plastic Solar Cells, J. Kepler University Linz, Austria
A.A. Zakhidov
Affiliation:
Honeywell International Inc., Research and Technology, Morristown, USA
Get access

Abstract

Artificial opal films have been prepared by sedimentation of monodisperse silica spheres in water suspension. Atomic force microscope images show a triangular packing of the spheres at the surface of the films. The presence and the energy position of an optical pseudo gap in incidence-angle-dependent transmittance and reflectance spectra is observed and accounted for by theoretical calculations of the photonic band structure. These calculations indicate that the pseudo gap is due to the splitting of the photonic bands in the L point of the Brillouin zone. The spectroscopic data show additional loss structures due to both other features of the Brillouin zone and the diffraction of the light from the regular surface of the sample. The effect of the infiltration of opals with polydiacetylene solutions is also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Joannopoulos, J.D., Meade, R.D., Win, J.N., Photonic Crystals, Princeton University press, Singapore (1995).Google Scholar
2. Gu, Z.Z., Iyoda, T., Fujishima, A., and Sato, O., Adv. Mater. 13, 1295 (2001).Google Scholar
3. Mau, S.-C. and Huse, D.A., Phys. Rev. E59, 4396 (1999).Google Scholar
4.For a review on this argument see Adv. Mater. 13 (2001).Google Scholar
5. Zakhidov, A.A., Baughman, R.H., Iqbal, Z., Cui, C., Khayrullin, I., Dantas, S.O., Marti, J., and Ralchenko, V.G., Science 282, 897 (1998).Google Scholar
6. Alloisio, M., Cravino, A., Moggio, I., Comoretto, D., Bernocco, S., Cuniberti, C., Dell'Erba, C., and Dellepiane, G., J. Chem. Soc., Perkin Trans. 2, 146 (2001).Google Scholar
7. Comoretto, D., in preparation.Google Scholar
8. Miguez, H., Lopez, C., Meseguer, F., Blanco, A., Vasquez, L., Mayoral, R., Ocaáa, M., Fornés, V., and Mifsud, A., Appl. Phys. Lett. 71, 1148 (1997). V. Colvin, MRS Bullettin 26, 637. W.L. Vos and H.M. van Driel, Phys. Lett. A272, 101 (2000).Google Scholar
9. Nozar, P., Dionigi, C., Muccini, M., Taliani, C., Adv. Mater., submitted.Google Scholar
10. Vos, W.L., Sprik, R., A. van Blaaderen, Imhof, A., Lagendijk, A., and Wegdam, G.H., Phys. Rev. B53, 16231 (1996).Google Scholar
11. Sottini, S., Margheri, G., Giorgetti, E., Gelli, F., Cravino, A., Comoretto, D., Cuniberti, C., Dell'Erba, C., Moggio, I., and Dellepiane, G., Non Linear Optics 25, 385 (2000).Google Scholar
12 Lanzani, G., Cerullo, G., Zavelani-Rossi, M., Silvestri, S. De, Comoretto, D., Musso, G., and Dellepiane, G., Phys. Rev. Lett. 87, 7402 (2001).Google Scholar