Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T18:03:20.472Z Has data issue: false hasContentIssue false

Optical Fabrication of Semiconductor Single-Crystalline Microspheres in Superfluid Helium

Published online by Cambridge University Press:  27 January 2014

Shinya Okamoto
Affiliation:
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
Satoshi Ichikawa
Affiliation:
Institute for NanoScience Design, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
Yosuke Minowa
Affiliation:
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
Masaaki Ashida
Affiliation:
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
Get access

Abstract

We successfully fabricated semiconductor microspheres of ZnO, ZnSe, etc., by laser ablation in superfluid helium and investigated their morphology and optical properties. Time-resolved photoluminescence spectroscopy in ultraviolet region of single ZnO microspheres shows luminescence spectra with mode structures and remarkable reduction of the luminescence decay time compared to that of polycrystals or non-spherical microparticles. This indicates strong light-matter interaction due to efficient light-confinement in the ZnO microspheres. In addition, the fabricated ZnSe microspheres also show the photoluminescence spectra with typical mode structures indicating their high sphericity.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Vahala, K. J., Nature 424, 839 (2003).CrossRefGoogle Scholar
Gerard, J. M., Barrier, D., Marzin, J. Y., Kuszelewicz, R., Manin, L., Costard, E., Thierry‐Mieg, V., and Riveraet, T., Appl. Phys. Lett. 69, 449 (1996).CrossRefGoogle Scholar
Johnson, J. C., Choi, H. J., Knutsen, K. P., Schaller, R. D., Yang, P., and Saykally, R. J., Nature Mater. 1, 106 (2002).CrossRefGoogle Scholar
Tamboli, A. C., Haberer, E. D., Sharma, R., Lee, K. H., Nakamura, S., and Hu, E. L., Nature Photon. 1, 61 (2007).CrossRefGoogle Scholar
Tamboli, A. C., Schmidt, M. C., Hirai, A., DenBaars, S. P., and Hu, E. L., Appl. Phys. Lett. 94, 251116 (2009).CrossRefGoogle Scholar
Haberer, E. D., Sharma, R., Meier, C., Stonas, A. R., Nakamura, S., DenBaars, S. P., and Hu, E. L., Appl. Phys. Lett. 85, 5179 (2004).CrossRefGoogle Scholar
Armani, D. K., Kippenberg, T. J., Spillane, S. M. and Vahala, K. J., Nature 421, 925 (2003).CrossRefGoogle Scholar
Kuwata-Gonokami, M., Takeda, K., Yasuda, H. and Ema, K., Jpn. J. Appl. Phys. 31, 99 (1992).CrossRefGoogle Scholar
Nagai, M., Hoshino, F., Yamamoto, S., Shimano, R., and Kuwata-Gonokami, M., Opt. Lett. 22, 1630 (1997).CrossRefGoogle Scholar
Vanheusden, K., Seager, C. H., Warren, W. L., Tallant, D. R., Caruso, J., Hampden-Smith, M. J., Kodas, T. T., J. Lumin. 75, 11 (1997).CrossRefGoogle Scholar
Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S. F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., and Kawasaki, M., Nature Mater. 4, 42 (2005).CrossRefGoogle Scholar
Czekalla, C., Sturm, C., Schmidt-Grund, R., Cao, B., Lorenz, M., and Grundmann, M., Appl. Phys. Lett. 92, 241102 (2008).CrossRefGoogle Scholar
Nobis, T. and Grundmann, M., Phys. Rev. A. 72, 063806 (2005).CrossRefGoogle Scholar
Dai, J., Xu, C. X., Zheng, K., Lv, C. G., and Cui, Y. P., Appl. Phys. Lett. 95, 241110 (2009).CrossRefGoogle Scholar
Dai, J., Xu, C. X., Sun, X. W., and Zhang, X. H., Appl. Phys. Lett. 98, 161110 (2011).CrossRefGoogle Scholar
Dai, J., Xu, C. X., Ding, R., Zheng, K., Shi, Z. L., Lv, C. G., and Cui, Y. P., Appl. Phys. Lett. 95, 191117 (2009).CrossRefGoogle Scholar
Zou, B., Liu, R., Wang, F., Pan, A., Cao, L., and Wang, Z. L., J. Phys. Chem. B. 110, 12865 (2006).CrossRefGoogle Scholar
Han, X., Wang, G., Wang, Q., Cao, L., Liu, R., Zou, B., and Hou, J. G., Appl. Phys. Lett. 86, 223106 (2005).CrossRefGoogle Scholar
Okamoto, S., Minowa, Y., Ashida, M., in Proceedings of SPIE. 8263, 82630K1–7 (2012).Google Scholar
Reynolds, D. C., Look, D. C., Jogai, B., Hoelscher, J. E., Sherriff, R. E., Harris, M. T., and Callahan, M. J., J. Appl. Phys. 88, 2152 (2000).CrossRefGoogle Scholar
Gayral, B., Gerard, J. M., Sermage, B., Lemaitre, A., and Dupuis, C., Appl. Phys. Lett. 78, 2828 (2001).CrossRefGoogle Scholar
Li, Q., Gong, X., Wang, C., Wang, J., Ip, K., and Hark, S., Adv. Mater. 16, 1436 (2004).CrossRefGoogle Scholar