Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:44:46.911Z Has data issue: false hasContentIssue false

One-Diohliensilonall A + B = 0 Reactmion with One Immobile Species

Published online by Cambridge University Press:  15 February 2011

Panos Argyrakisa
Affiliation:
Department of Physics, University of Thessaloniki, 54006 Thessaloniki, Greece
Raoul Kopelman
Affiliation:
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
Get access

Abstract

The elementary batch reaction A + B = 0 is re-examined via Monte-Carlo simulations on a one-dimensional lattice. The relative mobility of the A and B species is varied in this model, but the initial densities of the A and B are always the same. We calculate the rates, the density profiles, and the particle distribution functions. The rate power law is conserved, i.e., the well-known 1/4 behavior is established for all mobilities. The rate coefficient is the only mobility-dependent quantity. The interparticle distribution functions show that the aggregation depends on the relative mobility but the segregation does not. This subtle difference has no effect on the asymptotic reaction order, which is close to 5.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Papers from Conference on Models of Non-Classical Reactions Rates. J. Stat. Phys. 65 (1991).Google Scholar
2. Ovchinnikov, A.A. and Zeldovich, Y.B., Chem. Phys. 28,215 (1978).Google Scholar
3. Anacker, L.W. and Kopelman, R., Phys. rev. Lett. 58, 289 (1987).Google Scholar
4. a) Lindenberg, K., West, B.J., Kopelman, R., Phys. Rev. Lett. 60, 1777 (1988). b) B.J. West, R. Kopelman, K. Lindenberg, J. Stat. Phys. 54, 1429 (1989). c) K. Lindenberg, B.J. West, R. Kopelman, in Nose and Chaos in Nonlinear Dynamical Systems, edited by F. Moss, L. Lugiab, W. Schleich (Cambridge, 1990).Google Scholar
5. Clement, E., Sander, L.M., Kopelman, R., Phys. Rev. A. 39, 6455 (1989); 39, 6466 (1989); 39. 6472 (1989).Google Scholar
6. Bramson, M. and Lebowitz, J., J. Stat. Phys. 65, 941 (1991).Google Scholar
7. Sokolov, I.M., Schnorer, H., Blumen, A., Phys. Rev. A 44, 2388 (1991).Google Scholar
8. Anacker, L.A. and Kopelman, R., in Dynamics in Small Materials, edited by Drake, J.M., Klafter, J., Kopelman, R. (Mater. Res. Soc. Proc., Pittsburgh, 1990), p. 97.Google Scholar
9. Anacker, L.W. and Kopelman, R., Video Film, von Neumann Supercomputing Center, Princeton (1990).Google Scholar
10. Klymko, P.W. and Kopelman, R., J. Phys. Chem. 87, 4565 (1983).Google Scholar
11. Kopelman, R., in The Fractal Approach to Heterogeneous Chemistry, edited by Avnir, D. (Wiley, New York, 1989).Google Scholar
12. Agranovich, V.M. and Galanin, M.D., Electronic Excitation Energy Transfer in Condensed Matter (North Holland, Amsterdam, 1982).Google Scholar
13. Kopelman, R., Parus, S.J., Prasad, J., Chem. Phys. 128, 209 (1988).Google Scholar
14. Koo, Y.E. and Kopelman, R., J. Stat. Phys. 65, 893 (1991).Google Scholar
15. Kopelman, R. and Koo, Y.E., Israel J. Chem. 31, 147 (1991).Google Scholar
16. Galfi, L. and Racz, Z., Phys. Rev. A 38, 3151 (1988).Google Scholar
17. Taitelbaum, H., Havlin, S., Kiefer, J.E., Trus, B., Weiss, G. H., J. Stat. Phys. 65, 873 (1991).Google Scholar
18. Taitelbaum, H., Koo, Y-E. L., Havlin, S., Kopelman, R., Weiss, G.H., Phys. Rev. A 46, 2151 (1992).Google Scholar
19. Harmon, L.A., Li, L., Anacker, L.W., Kopelman, R., Chem. Phys. Lett. 168, 463 (1989).Google Scholar
20. Argyrakis, P. and Kopelman, R., Phys. Rev. A 41, 2121 (1990).Google Scholar
21. Redner, S. and Leyvraz, F., J. Stat. Phys. 65, 1043 (1991).Google Scholar
22. Zumofen, G., Klafter, J., Blumen, A., Phys. Rev. A 44, 8394 (1991).Google Scholar
23. Argyrakis, P. and Kopelman, R., Phys. Rev. A 45, 5814 (1992).Google Scholar