No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The elementary batch reaction A + B = 0 is re-examined via Monte-Carlo simulations on a one-dimensional lattice. The relative mobility of the A and B species is varied in this model, but the initial densities of the A and B are always the same. We calculate the rates, the density profiles, and the particle distribution functions. The rate power law is conserved, i.e., the well-known 1/4 behavior is established for all mobilities. The rate coefficient is the only mobility-dependent quantity. The interparticle distribution functions show that the aggregation depends on the relative mobility but the segregation does not. This subtle difference has no effect on the asymptotic reaction order, which is close to 5.