Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T08:00:53.636Z Has data issue: false hasContentIssue false

Nonlinear Ripple Formation in Sputter Erosion

Published online by Cambridge University Press:  10 February 2011

A.-L. Barabási
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
B. Kahng
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556 Department of Physics and Center for Advanced Materials and Devices, Konkuk University, Seoul 143–701, Korea
H. Jeong
Affiliation:
Department of Physics, University of Notre Dame, Notre Dame, IN 46556
S. Park
Affiliation:
Department of Physics and Center for Advanced Materials and Devices, Konkuk University, Seoul 143–701, Korea
Get access

Abstract

We investigate the morphological features of sputter eroded surfaces, demonstrating that while at short times ripple formation is described by the linear theory, after a characteristic time the nonlinear terms determine the surface morphology. We also show that the morphological transitions induced by the nonlinear effects can be detected by monitoring the surface width and the erosion velocity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mayer, T.M., Chason, E., and Howard, A.J., J. Appl. Phys. 76, 1633(1994).Google Scholar
2. Rusponi, S., Boragno, C., and Valbusa, U., Phys. Rev. Lett. 78, 2795(1997).Google Scholar
3. Chason, E., Mayer, T.M., Kellerman, B.K., McIlroy, D.T., and Howard, A.J., Phys. Rev. Lett. 72, 3040(1994).Google Scholar
4. Carter, G. and Vishnyakov, V., Phys. Rev. B 54, 17647(1996); Z.X. Jiang and P.F.A. Alkemade, Appl. Phys. Lett. 73, 315(1998).Google Scholar
5. Erlebacher, J., Aziz, M.J., Chason, E., Sinclair, M.B., and Floro, J.A., Phys. Rev. Lett. 82, 2330(1999).Google Scholar
6. Bradley, R.M. and Harper, J.M.E., J. Vac. Sci. Technol. A 6, 2390(1988).Google Scholar
7. Koponen, I., Hautala, M., and Sievaenen, O.-P., Phys. Rev. Lett. 78, 2612(1997).Google Scholar
8. Wittmaack, K., J. Vac. Sci. Technol. A 8, 2246(1990).Google Scholar
9. Erlebacher, J., Aziz, M.J., Chason, E., Sinclair, M.B., and Floro, J.A., J. Vac. Sci. Technol. A 18, 115(2000).Google Scholar
10. Vajo, J.J., Doty, R.E., and Cirlin, E.-H., J. Vac. Sci. Technol. A 6, 76(1988).Google Scholar
11. Rusponi, S., Costantini, G., Boragno, C., and Valbusa, U., Phys. Rev. Lett. 81, 2735(1998).Google Scholar
12. Eklund, E.A., Bruinsma, R., Ruidnick, J., and Williams, R.S., Phys. Rev. Lett. 67, 1759(1991).Google Scholar
13. Yang, H.-N., Wang, G.-C., and Lu, T.-M., Phys. Rev. B 50. 7635 (1994).Google Scholar
14. Cuerno, R. and Barabási, A.-L. Phys. Rev. Lett. 74, 4746(1995).Google Scholar
15. Makeev, M.A. and Barabási, A.-L. Appl. Phys. Lett. 71, 2800(1997).Google Scholar
16. Kardar, M., Parisi, G., and Zhang, Y.-C., Phys. Rev. Lett. 56, 889(1986).Google Scholar
17. Wolf, D.E., Phys. Rev. Lett. 67, 1783(1991).Google Scholar
18. Rost, M. and Krug, J., Phys. Rev. Lett. 75, 3894(1995).Google Scholar
19. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical Recipes (Cambridge Univ. Press, Cambridge, 1986).Google Scholar
20. Kahng, B., Jeong, H., and Barabási, A.-L., (unpublished).Google Scholar