Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:20:54.925Z Has data issue: false hasContentIssue false

New Damage-Less Patterning Method of A GaAs Oxide Mask and Its Application to Selective Growth by Mombe

Published online by Cambridge University Press:  22 February 2011

Seikoh Yoshida
Affiliation:
Optoelectronics Technology Research Laboratory 5-5 Tohkodai, Tsukuba, Ibaraki 300-26, Japan
Masahiro Sasaki
Affiliation:
Optoelectronics Technology Research Laboratory 5-5 Tohkodai, Tsukuba, Ibaraki 300-26, Japan
Get access

Abstract

A new damage-less patterning method of the photo-oxidized GaAs mask used for the selective-area growth of GaAs has been developed. We have found a new characteristic of the GaAs oxide: a metal Ga deposition onto the GaAs oxide surface lowers the desorption temperature of the oxide. The patterning method employed is based upon this characteristic. The GaAs oxide where 15 atomic layers (ALs) of Ga is deposited is locally removed at 540°C to form an opening area in the oxide mask. After forming this opening area, GaAs is selectively grown there by metal-organic molecular beam epitaxy (MOMBE).

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

[1] Hiratani, Y., Ohki, Y., and Sasaki, M., J. Crystal Growth 115, 74 (1991).Google Scholar
[2] Tokumitsu, E., Kudou, K., Konagai, M., and Takahashi, K., J. Appl. Phys. 55, 3163 (1984).Google Scholar
[3] Kamon, K., Takagishi, S., and Mori, H., J. Crystal Growth 73, 73 (1985).Google Scholar
[4] Hiratani, Y., Ohki, Y., Sugimoto, Y., Akita, K., Taneya, M., and Hidaka, H., Japan. J. Appl. Phys. Lett. 29, 1360 (1990).Google Scholar
[5] Temkin, H., Harriott, L.R., Hamm, R.A., Weiner, J., and Panish, M.B., Appl. Phys. Lett. 54, 1463 (1989).Google Scholar
[6] Taneya, M., Sugimoto, Y., Hidaka, H., and Akita, K., Japan. J. Appl. Phys. Lett. 28, 515 (1989).Google Scholar
[7] Akita, K., Taneya, M., Sugimoto, Y., Hidaka, H., and Katayama, Y., J. Vac. Sci. Technol. 7, 1471 (1989).Google Scholar
[8] Taneya, M., Sugimoto, Y., Hidaka, H., and Akita, K., J. Appl. Phys. 67, 4297 (1990).Google Scholar
[9] Kosugi, T., Mimura, R., Aihara, R., Gamo, K., and Namba, S., Japan. J. Appl. Phys. 29, 2295 (1990).Google Scholar
[10] Tanaka, N., Kawanishi, H., and Ishikawa, T., Japan. J. Appl. Phys. 32, 540 (1993).Google Scholar
[11] Yoshida, S., Hiratani, Y., Ohki, Y., and Sasaki, M., in : Extended Abstracts 52th Autumn Meeting Japan. Soc. Applied Physics, No.1, 288 (1991) (in Japanese).Google Scholar
[12] Sasaki, M. and Yoshida, S., submitted to J. Appl. Phys.Google Scholar
[13] Yoshida, S. and Sasaki, M., J. Crystal Growth. 133, 201 (1993).CrossRefGoogle Scholar
[14] Tone, K., Yamada, M., Ide, Y., and Katayama, Y., Japan. J. Appl. Phys. 31, 721 (1992).Google Scholar
[15] Buuren, T. Van, Weilmeier, M.K., Athwal, I., Mackenzie, K.M., and Tiedje, T., Appl. Phys. Lett. 59, 464 (1991).Google Scholar
[16] Wright, S and Kroemer, H., Appl. Phys. Lett. 36, 210 (1980).Google Scholar
[17] Yamaguchi, K. and Okamoto, K., Jpn. J. Appl. Phys. 29, 1408 (1990).Google Scholar
[18] Kayser, O., J.Crystal Growth 107, 989 (1991).Google Scholar
[19] Benassayag, G., Sudraud, P. and Swanson, L.W., Surface Science 191, 362 (1987).Google Scholar
[20] Clampitt, R., Aitken, K.L. and Jefferies, D.K., J. Vac. Sci. Technol. 12, 1204 (1975).Google Scholar
[21] Krohn, V.E. and Ringo, G.R., Appl. Phys. Lett. 27, 479 (1975).Google Scholar