Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:33:30.373Z Has data issue: false hasContentIssue false

Multifunctional Dendritic Architectures: An Investigation of their Mechanical Properties

Published online by Cambridge University Press:  21 February 2012

Haixia Zhou
Affiliation:
Organische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany, E-mail: [email protected]
Marcel Richter
Affiliation:
Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
Regine von Klitzing
Affiliation:
Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
Rainer Haag
Affiliation:
Organische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany, E-mail: [email protected]
Get access

Abstract

The paper deals with the synthesis and investigation of mechanical properties of multifunctional polyglycerol nanogels which consist of PEG with different chain lengths (glycerol, PEG 400, PEG 400-DGE, and PEG 1500). Their swelling behavior, elasticity, and stiffness are discussed in correlation with the PEG chain length. The nanogels built of PEG 400 exhibited most interesting and promising features and show the highest elasticity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kabanov, A. V., Vinogradov, S. V., Angew. Chem. Int. Ed., 48, 54185429 (2009).Google Scholar
2. Sisson, A. L., Steinhilber, D., Rossow, T., Welker, P., Licha, K., Haag, R., Angew. Chem. Int. Ed., 48, 75407545 (2009).Google Scholar
3. Bai, S., Nguyen, T.-L., Mulvaney, P., Wang, D., Adv. Mater., 22, 32473250 (2010).Google Scholar
4. Calderon, M., Quadir, M. A., Sharma, S. K., Haag, R., Adv. Mater., 22, 190218 (2010).Google Scholar
5. Frey, H., Haag, R., Reviews in Molecular Biotechnology, 90, 257267 (2002).Google Scholar
6. Sisson, A. L., Haag, R., Soft Matter, 6, 49684975 (2010).Google Scholar
7. Sisson, A. L., Papp, I., Landfester, K., Haag, R., Macromolecules, 42, 556559 (2008).Google Scholar
8. Zhou, H., Steinhilber, D., Schlaad, H., Sisson, A. L., Haag, R., React. Funct. Polym., 71, 356361 (2011).Google Scholar
9. Maeda, H., Sawa, T., Konno, T., J. Control. Release, 74, 4761 (2001).Google Scholar
10. Kim, Y., Thapa, M., Hua, D. H., Chang, K.-O., Antivir. Res., 89, 165173 (2011).Google Scholar
11. Dorati, R., Genta, I., Tomasi, C., Modena, T., Colonna, C., Pavanetto, F., Perugini, P., Conti, B., J. Microencapsul., 25, 330338 (2008).Google Scholar
12. Burmistrova, A., Richter, M., Eisele, M., Üzüm, C., von Klitzing, R., Polymers, 3, 15751590 (2011).Google Scholar
13. Landfester, K., Tiarks, F., Hentze, H. P., Antonietti, M., Macromol. Chem. Physic., 201, 15 (2000).Google Scholar
14. Burmistrova, A., Richter, M., Üzüm, C., von Klitzing, R., Colloid Polym. Sci., 289, 613624 (2011).Google Scholar
15. Steinhilber, D., Seiffert, S., Heyman, J. A., Paulus, F., Weitz, D. A., Haag, R., Biomaterials, 32, 13111316 (2011).Google Scholar
16. Thomas, A., Schlaad, H., Smarsly, B., Antonietti, M., Langmuir, 19, 44554459 (2003).Google Scholar
17. Mitragotri, S., Lahann, J., Nat. Mater., 8, 1523 (2009).Google Scholar
18. Haag, R., Kratz, F., Angew. Chem. Int. Ed., 45, 11981215 (2006).Google Scholar