Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T08:07:22.158Z Has data issue: false hasContentIssue false

Morphological Instability of Solid-on-Liquid Thin Film Structures

Published online by Cambridge University Press:  11 February 2011

Rui Huang
Affiliation:
Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712
Z. Suo
Affiliation:
Department of Mechanical and Aerospace Engineering and Princeton Materials Institute, Princeton University, Princeton, NJ 08544
Get access

Abstract

Subject to a compressive membrane force, a solid film on a liquid layer may form wrinkles. When the solid film is very thin, surface stresses contribute to the membrane force. When the liquid layer is very thin, the two interfaces bounding the liquid interact with each other through forces of various physical origins. We formulate the free energy of the solid-on-liquid structure, and carry out a linear perturbation analysis. A dimensionless parameter is identified to quantify the relative importance of flexural rigidity, membrane force, and interfacial force. Depending on the nature of the interfacial force, several intriguing behaviors are possible; for example, the solid film may remain flat under a compressive membrane force, or form wrinkles under a tensile membrane force.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Williams, M.B., Davis, S.H., Colloid, J. and Interface Science 90, 220 (1982).Google Scholar
2. Herminghaus, S., Jacobs, K., Mecke, K., Bischof, J., Fery, A., Ibnelhaj, M., Schlagowski, S., Science 282, 916 (1998).Google Scholar
3. Witelski, T.P., Bernoff, A.J., Physica D 147, 155 (2000).Google Scholar
4. Bestehorn, M., Neuffer, K., Phys. Rev. Lett. 87, art. no. 046101 (2001).Google Scholar
5. Gibbs, J.W., Trans. Conn. Acad. III (1878) 343. Reprinted in 1993, The Scientific Papers of J. Willard Gibbs, vol. 1, 314–315, by Ox Bow Press, Woodbridge, Connecticut.Google Scholar
6. Cahn, J.W., Acta Metallurgica 28, 1333 (1980).Google Scholar
7. Cammarata, R.C., Prog. Surf. Sci. 46, 1 (1994).Google Scholar
8. Cammarata, R.C., Sieradzki, K., Annual Rev. Mater. Sci. 24, 215 (1994).Google Scholar
9. Ibach, H., Surface Science Reports 29, 193 (1997).Google Scholar
10. Sridhar, N., Srolovitz, D.J., Suo, Z., Appl. Phys. Lett. 78, 2482 (2001).Google Scholar
11. Sridhar, N., Srolovitz, D.J., Cox, B.N., Acta Materialia 50, 2547 (2002).Google Scholar
12. Huang, R., Suo, Z., J. Applied Physics 91, 1135 (2002).Google Scholar
13. Huang, R., Suo, Z., International Journal of Solids and Structures 39, 1791 (2002).Google Scholar
14. Timoshenko, S., Woinowsky-Krieger, S., Theory of Plates and Shells, 2nd ed. (McGraw-Hill, Inc., New York, 1987).Google Scholar
15. Verwey, J.W., Overbeek, J.Th.G., Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, Netherlands, 1948. Reprinted by Dover Publications, New York, 1999).Google Scholar
16. Russel, W.B., Saville, D.A., Schowalter, W.R., Colloidal dispersions (Cambridge University Press, Cambridge, England, 1989).Google Scholar
17. Zhang, Z.Y., Niu, Q., Shih, C.K., Phys. Rew. Lett. 80, 5381 (1998).Google Scholar
18. Suo, Z., Zhang, Z.Y., Physical Review B 58, 5116 (1998).Google Scholar