Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:26:56.932Z Has data issue: false hasContentIssue false

Molecular Dynamics Study of the Lattice Vibration Contribution to the Frequency-Dependent Dielectric Constant of Lithium Iodide

Published online by Cambridge University Press:  28 February 2011

J. Deppe
Affiliation:
Physics Department, University of California, Irvine Irvine, California 92717
M. Balkanski
Affiliation:
Laboratoire de Physique des SolidesUniversité Pierre et Marie Curie4 Place Jussieu, 75252 Paris Cédex 05, France
R. F. Wallis
Affiliation:
Physics Department, University of California, Irvine Irvine, California 92717
A. McGurn
Affiliation:
Department of PhysicsWestern Michigan UniversityKalamazoo, Michigan 49008-5151
Get access

Abstract

A molecular dynamics simulation has been performed on the crystal lithium iodide, LiI. A rigid ion potential was used with parameters fit to thermal expansion, isothermal compressibility, lattice energy and the frequency of the transverse optical mode at the zone center. The current-current correlation function has been calculated at T = 200K and 400K, and from this the absorption and dispersion have been obtained. Anharmonic broadening is observed at the higher temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Michielsen, J., Woerlee, P., Graaf, F. v.d. and Ketelaar, J. A. A., J. of Non-Cryst. Solids 101, 101110 (1988).Google Scholar
[2] Roger, P. M. Stone, A. J. and Tildesley, D. J., Chem. Phys. Let. 145, 365 (1988).CrossRefGoogle Scholar
[3] Madden, P. A. and Board, J. A., J. Chem. Soc. Fara. Trans. II 83, 1891 (1987).CrossRefGoogle Scholar
[4] McClean, K. O. and Smith, C. S., J. Phys. Chem. Solids 33, 275 (1972).CrossRefGoogle Scholar
[5] Rastogi, A., Hawranek, J. P. and Lowndes, R. P., Phys. Rev. B. 9, 1938 (1973)CrossRefGoogle Scholar
[6] Lowndes, R. P. and Martin, D. H., Proc. Roy. Soc. A. 308, 473 (1969).Google Scholar
[7] See e.g., Kittel, C., Introduction to Solid State Physics, 5th edition, (John Wiley and Sons, New York, 1976), p. 92.Google Scholar
[8] Tosi, M. P., Sol. St. Phys. 16, 1 (1964).CrossRefGoogle Scholar
[9] Pauling, L., The Nature of the Chemical Bond, (Cornell University Press, Ithaca, NY, 2,d edn., 1940).Google Scholar
[10] Sangster, M. J. L. and Dixon, M., Advances in Physics 25, 247 (1976).CrossRefGoogle Scholar
[11] Born, M. and Mayer, J. E., Z. Phys. 75, 1 (1932).CrossRefGoogle Scholar
[12] Cubicciotti, D., J. Chem. Phys. 31, 1646 (1959).CrossRefGoogle Scholar
[13] Ladd, M. F. C., J. of Chem. Phys. 60, 1954 (1974).CrossRefGoogle Scholar
[14] Wallis, R. F. and Balkanski, M., Many Body Aspects of Solid State Spectroscopy (North- Holland Physics, New York, 1986), p. 49.Google Scholar