Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T10:03:23.028Z Has data issue: false hasContentIssue false

Microstructure of GaN Grown on (111) Si by MOCVD

Published online by Cambridge University Press:  15 February 2011

D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
P. Provencio
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
J. G. Fleming
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-1056
Get access

Abstract

Gallium nitride was grown on (111) Si by MOCVD by depositing an AlN buffer at 1080°C followed by GaN at 1060°C. The 2.2 μm layer cracked along {1-100} planes upon cooling to room temperature, but remained adherent. We were nonetheless able to examine the material between cracks with TEM. The character and arrangement of dislocations are much like those of GaN grown on Al2O3: ∼2/3 pure edge and ∼1/3 mixed (edge + screw), arranged in boundaries around domains of GaN that are slightly misoriented with respect to neighboring material. The 30 nm AlN buffer is continuous, indicating that AIN wets the Si, in contrast to GaN on Al2O3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Han, J., Flemming, J. G. and Follstaedt, D. M., Mat. Res. Soc. Symp. Proc. 512, 53 (1998).Google Scholar
2. Watanabe, A., Takuchi, T., Hirosawa, K., Amano, H., Hiramatsu, K. and Akasaki, I., J. Crystal Growth, 128, 391396 (1993).Google Scholar
3. Guha, S. and Bojarczuk, N. A., Appl. Phys. Lett. 72, 415 (1998).Google Scholar
4. Hearne, S., Floro, J. A. and Tsong, I., private communication (in situ stress measurements).Google Scholar
5. Basu, S. N., Lei, T. and Moustakas, T. D., J. Mater. Res. 9, 2370 (1994).Google Scholar
6. Hirth, J. P. and Lothe, J., Theory of Dislocations, 2nd ed. (Krieger Publishing Co., Malabar, FL, 1992) p. 270.Google Scholar
7.Dislocations were analyzed as described herein; the growth of our GaN on sapphire is discussed by Ng, T.-B., Han, J., Biefeld, R. M. and Weckwerth, M. V., J. Electron. Mat. 27, 190 (1998).Google Scholar
8. Wu, X. H., Brown, L. M., Kapolnek, D., Keller, S., Keller, B., DenBaars, S. P. and Speck, J. S., J. Appl. Phys. 80, 3228 (1996).Google Scholar
9. Ning, X. J., Chien, F. R., Pirouz, P., Yang, J. W. and Khan, M. A., J. Mater. Res. 11, 580 (1996).Google Scholar
10. Liliental-Weber, Z., Chen, Y., Ruvimov, S. and Washburn, J., Phys. Rev. Lett. 79, 2835 (1997).Google Scholar
11. Wu, X.H., Fini, P., Keller, S., Tarsa, E.J., Heying, B., U.K Mishra, DenBaars, S.P. and Speck, J.S., Jpn. J. Appl. Phys. Pt.2, 35 L1648 (1996).Google Scholar