Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T05:16:17.707Z Has data issue: false hasContentIssue false

Micromachining of Silicon Mechanical Structures

Published online by Cambridge University Press:  25 February 2011

G. Kaminsky*
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ 08544.
Get access

Abstract

Refined processing procedures for producing geometrically highly precise silicon structures are described. The structures are fabricated by the high-precision micromachining of silicon utilizing wet chemical orientation and/or concentration dependent, etching techniques. Very exact processing procedures required to reproducibly achieve good high quality structures with excellent large and small scale uniformity are detailed. Relief structures having features as small as 0.2μm have been produced. Some of the structures and devices attainable will be described including: (1) very high Q torsional oscillators useful as powerful probes of the mechanical properties of a variety of physical systems, (2) unstrained focusing x-ray mirrors, and (3) μm dimension mechanical “shadow masks” with multiple slit features having knife-edge acuity of much better than 1μm over an area ˜1cm2 and useful for noncontaminative, in situ patterning of thin films deposited in MBE or other vacuum deposition techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stoller, A.I., RCA Rev. 31, 271 (1970).Google Scholar
2. Bassous, E., IEEE Trans. Electron Devices ED–25, 1178 (1978).Google Scholar
3. Bean, K.E., IEEE Trans. Electron Devices ED–25, 1185 (1978).Google Scholar
4. Kendall, D.L., Annu. Rev. Mater. Sci. 9, 373 (1979).Google Scholar
5. Kendall, D.L., Appl. Phys. Lett. 26, 195 (1975).Google Scholar
6. Craft, W.H., Circuits Manuf. 17, 45 (1977).Google Scholar
7. Stoller, A.I., Speers, R.F. and Opresko, S., RCA Rev. 31, 265 (1970).Google Scholar
8. Schmidt, C.J., Lenzo, P. and Spencer, E.G., J. Appl. Phys. 40, 4080 (1975).Google Scholar
9. Cheung, N.W., Rev. Sci. Instrum. 51, 1212 (1980).Google Scholar
10. Huang, C.L. and Duzer, T. Van, Appl. Phys. Lett. 25, 753 (1974).Google Scholar
11. Huang, C.L. and Duzer, T. Van, IEEE Trans. Electron Dev. ED–23, 579 (1976).CrossRefGoogle Scholar
12. Derick, L., AT&T Bell Laboratories, memorandum No. MM 55–113-51, October 3, 1955.Google Scholar
13. Schwartz, B. and Robbi, H., J. Electrochem. Soc. 108, 356 (1961).Google Scholar
14. Finne, R.M. and Klein, D.L., J. Electrochem. Soc. 114, 965 (1967).Google Scholar
15. Bassous, E. and Baran, E.F., J. Electrochem. Soc. 125, 1321 (1978).Google Scholar
16. Tsumita, N., Melngailis, J., Hawryluk, A.M. and Smith, H.I., J. Vac. Sci. Technol. 19, 1211 (1981).CrossRefGoogle Scholar
17. Bohg, A., J. Electrochem. Soc. 2, 401 (1971).Google Scholar
18. Adesida, I., Everhart, T.E. and Shimizu, R., J. Vac. Sci. Technol. 16, 1743 (1979).Google Scholar
19. Coe, D.J., Solid State Electron. 20, 985 (1977).Google Scholar
20. Tsang, Won-Tien and Wang, Shyh, J. Appl. Phys. 46, 2163 (1975).Google Scholar
21. Petersen, K.E., IBM J. Res. Dev. 24, 631 (1980).Google Scholar
22. Kaminsky, G., J. Vac. Sci. Technol. 3, 1015 (1985).Google Scholar
23. Agnolet, G., Reppy, J.D., Kaminsky, G. and Bishop, D.J., Bull. Am Phys. Soc. 29, 223 (1984).Google Scholar
24. Kleiman, R.N., Kaminsky, G., Reppy, J.D., Pindak, R. and Bishop, D.J., Rev. Sci. Instrum. 56, 2088 (1985).Google Scholar
25. Kleiman, R.N., Agnolet, G. and Bishop, D.J. (submitted to Phys. Rev.).Google Scholar
26. Kaminsky, G., J. Vac. Sci. Technol. 3, 741 (1985).Google Scholar
27. Palik, E.D., Faust, J.W. Jr., Gray, H.F. and Green, P.F., J. Electrochem. Soc. 129, 2051 (1982).Google Scholar
28. Fluoroware, Inc., Chaska, Minnesota.Google Scholar
29. Buffered oxide etchant (7:1), Transene Co., Inc., Bulletin No. 208.Google Scholar
30. Slone “DEKTAK II” surface profiler with a 12μm size probe.Google Scholar
31. Muraka, S.P., Levenstein, H.J., Marcus, R.B. and Wagner, R.S., J. Appl. Phys. 48, 4001 (1977).Google Scholar
32. Nano Spec/AFT model SDP-2000T optical film thickness computer.Google Scholar
33. Preferential silicon etchant, type PSE-100, Transene Co., Inc., Bulletin No. 207, Nov., 1982.Google Scholar
34. Preferential silicon etchant, type PSE-200, Transene Co., Inc., Bulletin No. 207, Nov., 1982.Google Scholar
35. Preferential silicon etchant, type PSE-300, Transene Co., Inc., Bulletin No. 207, Nove., 1982.Google Scholar