Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T18:53:34.968Z Has data issue: false hasContentIssue false

Measurements of the Conductivity of Individual 10 Nm Carbon Nanotubes

Published online by Cambridge University Press:  22 February 2011

George M. Whitesides
Affiliation:
Harvard University, Department of Chemistry, 12 Oxford St. Cambridge, MA 02138
Carl S. Weisbecker
Affiliation:
Harvard University, Department of Chemistry, 12 Oxford St. Cambridge, MA 02138
Get access

Abstract

Catalytically grown carbon fibers approximately 10 nm in diameter and several microns long were characterized by transmission electron microscopy and determined to be multiple-walled nanotubes, and a technique was developed to measure the conductivity of an individual nanotube. Nanotubes were dispersed in solvents and precipitated onto lithographically defined gold contacts to make a ‘nano-wire’ circuit. Non-contact AFM was used to image the nano-wires, and a resistance of 11.4 (± 1.0) MΩ was measured through a single nanotube at 23°C. A resistivity of 9.5×10−5 Ω m was estimated for carbon conducting along the axis of a fiber. Local heating of nanotubes appeared to occur at high current densities. The nanotubes could sustain currents on the order of 10 μA per fiber, but application of currents on the order of 100 μA per fiber resulted in rapid decomposition in air and breaking of the circuit.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hamada, N., Sawada, S.-i., and Oshiyama, A., Phys. Rev. Lett. 68 (10), 1579 (1992).Google Scholar
2. Ajiki, H., Ando, T., J. Phys. Soc. Jpn. 62 (4), 12551266 (1993).Google Scholar
3. Saito, R., Dresselhaus, G., Dresselhaus, M. S., J. Appl. Phys. 73 (2), 494500 (1993).Google Scholar
4. Imai, J. and Kaneko, K., Langmuir, 8, 16951697 (1992).Google Scholar
5. Kuriyama, K., Phys. Rev. B, 19 (47), 1241512419 (1993).Google Scholar
6. Oloman, C., Matte, M., and Lum, C. J., Electrochem. Soc. 138 (8), 23302334 (1991).Google Scholar
7. Heremans, J., Rahim, I., and Dresselhaus, M. S., Phys. Rev. B 32 (10), 6742 (1985).Google Scholar
8. Tahar, M. Z., Dresselhaus, M. S., and Endo, M., Carbon 24 (1), 6772 (1986).Google Scholar
9. Langer, L., Stockman, L., Heremans, J. P., Bayot, V., Olk, C. H., Haesendonck, C. Van, Bruynseraede, Y., and Issi, J-P., J. Mater. Res. 9 (4), 927 (1994).Google Scholar
10. Song, S. N., Wang, X. K., Chang, R. P. H., and Ketterson, J. B., Phys. Rev. Lett. 72 (5), 697700 (1994).Google Scholar
11. Rodriquez, N. M., J. Mater. Res. 8(12), 3246 (1993).Google Scholar
12. Lieber, C. M. and Zhang, Z., Appl. Phys. Lett. 62, 2795 (1993).Google Scholar
13. Gallagher, M. J., Chen, D., Jacobsen, B. P., Sarid, D., Lamb, L. D., Tinker, F. A., Jiao, J., and Huffman, D. R., Surf. Sci. Lett. 281, L335–L340 (1993).Google Scholar
14. Olk, C. H. and Heremans, J. P., J. Mater. Res. 9 (2), 259262 (1994).Google Scholar
15. Kumar, A. and Whitesides, G. M., Science 263, 60 (1994).Google Scholar
16. Niu, Q., Phys. Rev. Lett. 64 (15), 1812 (1990); P. Delsing, K. K. Likharev, L. S. Kuzmin, and T. Claeson, ibid. 63 (17), 1861-1864 (1989).Google Scholar
17. Klein, C. A., J. Appl. Phys. 33, 3346 (1962); P. R. Wallace, Phys. Rev. 71 (9), 622 (1947).Google Scholar