Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-02T23:56:59.144Z Has data issue: false hasContentIssue false

Magnetron Reactive Ion Etching of GaAs: Plasma Chemical Aspects and Surface Damage Studies

Published online by Cambridge University Press:  21 February 2011

G. F. McLane
Affiliation:
U. S. Army Electronic Technology and Devices Laboratory, Fort Monmouth, NJ
M. Meyyappan
Affiliation:
Scientific Research Associates, Inc., Glastonbury, CT 06033
M. Taysing-Lara
Affiliation:
U. S. Army Electronic Technology and Devices Laboratory, Fort Monmouth, NJ
M. W. Cole
Affiliation:
U. S. Army Electronic Technology and Devices Laboratory, Fort Monmouth, NJ
C. Wrenn
Affiliation:
Vitronics, Inc., Eatontown, NJ 07724
L Yerke
Affiliation:
U. S. Army Electronic Technology and Devices Laboratory, Fort Monmouth, NJ
D. Eckart
Affiliation:
U. S. Army Electronic Technology and Devices Laboratory, Fort Monmouth, NJ
Get access

Abstract

Using a magnetic field to confine the plasma closer to the cathode has been shown to be advantageous in dry etching technology since this yields a high degree of ionization at low pressures. We report here the results of a study of magnetron reactive ion etching of GaAs using a freon discharge. Various characterization techniques have been employed to understand the etching process and identify the extent of surface damage. The results show that magnetron etching is capable of yielding high etch rates with low damage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bright, A. A., Kaushik, S. and Oehrlein, G. S., J. Appl. Phys., 62 2518 (1987).Google Scholar
2. Bright, A. A. and Kaushik, S., J. Vac. Sci. Technol., B7 542 (1989).Google Scholar
3. Lin, I., Hinson, D. C., Class, W. H., Sandstrom, R.L, and Pasierb, F., Electrochem. Soc. Extended Abstracts 83–1, 132 (1983).Google Scholar
4. Contolini, R. J. and D'Asaro, L A., J. Vac. Sci. Technol, B (4)706 (1986).Google Scholar
5. Pearton, S. J., Vasile, M. J., Jones, K. S., Short, K. T., Lane, E., Fullowan, T. R., Von Neida, A. E., and Haegel, N. M., J. Appl. Phys., 65 (3), 1281 (1989).Google Scholar