Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T05:38:47.460Z Has data issue: false hasContentIssue false

Macrocellular Silica Monoliths Hierarchically Textured: Mesostructured Si-HIPE Materials

Published online by Cambridge University Press:  01 February 2011

F. Carn
Affiliation:
Centre de Recherche Paul Pascal CNRS UPR 8641, 115 Ave Albert Schweitzer, 33600 Pessac, France;
A. Colin
Affiliation:
Laboratoire du Futur, UMR CNRS-Rhodia FRE2771, IECB, 2 rue Robert Escarpit, 33607 Pessac, France.
R. Backov*
Affiliation:
Centre de Recherche Paul Pascal CNRS UPR 8641, 115 Ave Albert Schweitzer, 33600 Pessac, France;
Get access

Abstract

Interface between sol-gel process and soft matter appears recently as a very nice tool to generate new materials with complex textures or/and structures extended at various length scales. In this general context, hierarchical inorganic porous monoliths have been prepared using a double templates procedure, namely concentrated emulsion as a macroscopic pattern and mesoscopic micellar templates. The texture of those monoliths can vary dramatically playing either with the oil volume fraction, synthetic pH conditions or the emulsification process. These materials show interconnected macroporosity associated to vermicular-type mesostructuration with an average mesoporosity of 800 m2/g associated to bulk density as low as 0.08 g cm-3 which is comparable to values obtained for silica aerogel.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., Nature, 1992, 359, 710;Google Scholar
Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., et al., J. Am. Chem. Soc, 1992, 114, 10834.Google Scholar
2. Carn, F., Colin, A., Achard, M.-F, Deleuze, H., Backov, R., Adv. Mater., 2004, 16, 140.Google Scholar
3. Carn, F., Colin, A., Achard, M-F., Sellier, E., Birot, M., Deleuze, H. and Backov, R., J. Mater. Chem. 2004, 14, 1370.Google Scholar
4. Wang, D., Caruso, R. A., Caruso, F., Chem. Mater. 2001, 13, 364.Google Scholar
5. Hall, S. R., Bolger, H., Mann, S., Chem. Commun., 2003, 2784.Google Scholar
6. Mann, S., Nature, 1988, 332, 119;Google Scholar
Archibald, D.D., Mann, S., Nature, 1993, 364, 430;Google Scholar
Feng, P., Bu, X., Stucky, G.D., Pine, D.J., J. Am. Chem. Soc., 2000, 5, 994;Google Scholar
Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S., Ozin, G.A., Nature, 1996, 379, 703.Google Scholar
7. Imhof, A., Pine, D.J., Nature, 1997, 389, 948.Google Scholar
8. Yi, G.-R., Yang, S.M., Chem. Mater., 1999, 11, 2322.Google Scholar
9. Flaugh, P.L., O'Donnel, S.E., Asher, S.A., Appl. Spectrosc., 1984, 38, 847;Google Scholar
10. Binks, B.P., Adv. Mater., 2002, 14, 1824.Google Scholar
11. Zhang, H., Hardy, G.C., Rosseinsky, M.J., Cooper, A.I., Adv. Mater., 2003, 15, 78.Google Scholar
12. Nakashi, K., Kobayashi, Y., Amati, T., Hiro, K., Kodaira, T., Chem. Mater. 2004, 16, 3652.Google Scholar
13. Deleuze, H., Faivre, R., Heroguez, V., Chem. Comm., 2002, 2822 Google Scholar
14. Mooney, M., J. Colloid Interface Sci., 1951, 6, 162.Google Scholar
15. Mason, T.G., Bibette, J., and Weitz, D.A., J. Colloid Interface Sci., 1996, 179, 439.Google Scholar
16. Aronson, M.-P. and Petko, M.-F., J. Colloid Interface Sci., 1993, 159, 134.Google Scholar
17. Brinker, C. J., Scherer, G. W., in “Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing”, Academic Press, San Diego 1990.Google Scholar