Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T01:37:46.678Z Has data issue: false hasContentIssue false

Luminescence and Resonance Raman Spectroscopy of Indirect Excitons in AgBr Nanocrystals

Published online by Cambridge University Press:  28 February 2011

S. Pawlik
Affiliation:
Fachbereich Physik, Universität-GH, 33095 Paderborn, Germany
H. Stolz
Affiliation:
Fachbereich Physik, Universität-GH, 33095 Paderborn, Germany
W. Von Der Osten
Affiliation:
Fachbereich Physik, Universität-GH, 33095 Paderborn, Germany
Get access

Abstract

AgBr nanocrystals with radii R ≈ 2.5 to 5 nm comparable with the exciton Bohr radius are produced in inverse micelles. As compared with bulk AgBr, the exciton emission exhibits a substantial blue shift and enhanced intensity due to the spatial confinement. Besides luminescence, first- and second-order resonance Raman scattering is discovered the occurrence of a zero-phonon process clearly revealing mixing of L with Г point states. From time-resolved measurements, exciton lifetimes of the order of 500 μs are found. They are close to the radiative lifetime in the bulk demonstrating that nonradiative processes are negligible in these nanocrystals. In agreement with state mixing, the total decay rate is found proportional to R−2. A small shift of the TO(L) Raman line with excitation photon energy is analyzed in terms of the wavevector dependent interaction of the quantized exciton states with the dispersive phonon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Brus, L., Appl. Phys. A 53, 465 (1991).Google Scholar
2 Itoh, T., Furumiya, M., Ikehara, T., Iwabuchi, Y., Kirihara, T., and Gourdon, C., in Proc. Taiwan-Jap. Workshop on Solid Opt. Spectr. (World Scientific, Singapore, 1991).Google Scholar
3 Flytzanis, C. and. Hutter, J., in Contemporary Nonlinear Optics edited by Agrawal, G.P. and Boyd, R.W. (Academic Press, London, 1992) p. 297.Google Scholar
4 Lockwood, D.J., Solid State Commun. 92, 101 (1994).Google Scholar
5 Johansson, K.P., McLendon, G.L., and Marchetti, A.P., Chem. Phys. Lett. 179, 321 (1991).Google Scholar
6 Johansson, K.P., Marchetti, A.P., and McLendon, G.L., J. Phys. Chem. 96, 2873 (1992).Google Scholar
7 Marchetti, A.P., Johansson, K.P., and McLendon, G.L., Phys. Rev. B 47, 4268 (1993-11).Google Scholar
8 Kanzaki, H. and Tadakuma, Y., Solid State Commun. 80, 33 (1991)Google Scholar
9 Scholle, U., Stolz, H., and von der Osten, W., Solid State Commun. 86, 657 (1993).Google Scholar
10 Pawlik, S., Scholle, U., Weber, Th., Stolz, H., and von der Osten, W., J. Physique IV, Coll. C5, suppl. J. Physique II, 151 (1993).Google Scholar
11 von der Osten, W., in Topics in Applied Physics, Light Scattering in Solids VI, edited by Cardona, M. and Güntherodt, W. (Springer, Berlin, 1991), p. 361.Google Scholar
12 Masumoto, Y., Kawamura, T., Ohzeki, T., and Urabe, S., Phys. Rev. B 46, 1827 (1992-1).Google Scholar
13 Kayanuma, Y., Phys. Rev. B 38, 9797 (1988-1).Google Scholar
14 Pawlik, S., Diplomarbeit, Universität-GH Paderborn 1993 Google Scholar
15 Toyozawa, Y., private communication.Google Scholar
16 Banyai, L.A., Habilitationsschrift, Universität Frankfurt/Main (1991).Google Scholar
17 Timme, M., Schreiber, E., Stolz, H. and von der Osten, W., Solid State Commun. 55, 79 (1993).Google Scholar