Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T05:33:11.434Z Has data issue: false hasContentIssue false

Liquid Compounds for CVD of Alkaline Earth Metals

Published online by Cambridge University Press:  10 February 2011

Roy G. Gordon
Affiliation:
Harvard University Chemical Laboratories, 12 Oxford Street, Cambridge, MA 02138
Seán T. Barry
Affiliation:
Harvard University Chemical Laboratories, 12 Oxford Street, Cambridge, MA 02138
Xinye Liu
Affiliation:
Harvard University Chemical Laboratories, 12 Oxford Street, Cambridge, MA 02138
Daniel J. Teff
Affiliation:
Harvard University Chemical Laboratories, 12 Oxford Street, Cambridge, MA 02138
Get access

Abstract

The first room-temperature liquid compounds useful for the CVD of alkaline earth metalcontaining oxides were prepared by reacting metal (Mg, Ca, Sr, and Ba) beta-diketonates with novel polyamine ligands. The compounds are monomeric and can be completely flash-vaporized without leaving any non-volatile residue detectable at the parts-per-million level. A stable, solvent-free liquid mixture was formed by mixing new liquid barium, strontium and titanium compounds. CVD experiments using direct liquid injection of this liquid mixture deposited films of barium strontium titanate. This approach should also be applicable to the deposition of many other multicomponent oxides containing alkaline earth metals: ferroelectrics (strontium bismuth tantalate), metallic conductors (strontium vanadium oxide, lanthanum strontium cobalt oxide), phosphors (calcium tungstate), non-linear optical materials (beta-barium borate), magnetic oxides (barium ferrite), colossal magnetoresistive materials (lanthanum strontium manganese oxide), high Tc superconductors (yttrium barium copper oxide, bismuth calcium strontium copper oxide) and microwave dielectrics (barium magnesium tantalate).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For reviews, see Hubert-Pfalzgraf, L. G., Electrochemical Soc. Proc. 97–25, 824 (1998); W. A. Wojtczak, P. F. Fleig and M. J. Hampden-Smith, Advances in Organometallic Chem. 40, 215 (1996); A. A. Drozdov and S. I. Troyanov, Main Group Met. Chem. XIX, 547 (1996); R. E. Sievers, S. B. Turnipseed, L. Huang and A. F. Lagolate, Coord. Chem. Rev. 128 285 (1993).Google Scholar
2. Rees, W. S., Jr., Caballero, C. R. and Hesse, W., Angew. Chem. Int. Ed. Engl. 31, 735 (1992).10.1002/anie.199207351Google Scholar
3. Nash, J. A, Barnes, J. C., Cole-Hamilton, David J., Richards, B. C., Cook, S. L. and Hitchman, M. L., Advanced Materials for Optics and Electronics 5, 1 (1995); I. K. Igumenov, P. P. Semyannikov and S. V. Belaya, Polyhedron 15,4521 (1996).10.1002/amo.860050103Google Scholar
4. Gordon, R. G., Chen, F., DiCeglie, N. J., Jr., Kenigsberg, A., Liu, X., Teff, D. J. and Thornton, J., Mat. Res. Soc. Symp. Proc. 495, 63 (1998).10.1557/PROC-495-63Google Scholar
5. Gordon, R. G., Barry, S. T., Broomhall-Dillard, R. N. R., DiCeglie, N. J., Jr., Liu, X. and Teff, D. J., J. Electrochem. Soc. (to be published).Google Scholar
6. Berg, E. and Herrera, N.M., Anal. Chim. Acta 60, 117, (1972); S. R. Drake, M. B. Hursthouse, K. M. A. Malik and D. J. Otway, J. Chem. Soc., Dalton Trans. 1993, 2883.10.1016/S0003-2670(01)81890-0Google Scholar