Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T09:31:10.524Z Has data issue: false hasContentIssue false

Linear measurements of nanomechanical phenomena using small-amplitude AFM

Published online by Cambridge University Press:  01 February 2011

Peter M. Hoffmann
Affiliation:
Department of Physics, Wayne State University, Detroit MI 48201
Shivprasad Patil
Affiliation:
Department of Physics, Wayne State University, Detroit MI 48201
George Matei
Affiliation:
Department of Physics, Wayne State University, Detroit MI 48201
Atay Tanulku
Affiliation:
Department of Physics, Wayne State University, Detroit MI 48201
Ralph Grimble
Affiliation:
Department of Materials, University of Oxford, Oxford, UK
Özgur Özer
Affiliation:
Department of Physics, Trinity College, Dublin, Ireland
Steve Jeffery
Affiliation:
Department of Materials, University of Oxford, Oxford, UK
Ahmet Oral
Affiliation:
Department of Physics, Bilkent University, Ankara, Turkey
John Pethica
Affiliation:
Department of Physics, Trinity College, Dublin, Ireland
Get access

Abstract

Dynamic Atomic Force Microscopy (AFM) is typically performed at amplitudes that are quite large compared to the measured interaction range. This complicates the data interpretation as measurements become highly non-linear. A new dynamic AFM technique in which ultra-small amplitudes are used (as low as 0.15 Angstrom) is able to linearize measurements of nanomechanical phenomena in ultra-high vacuum (UHV) and in liquids. Using this new technique we have measured single atom bonding, atomic-scale dissipation and molecular ordering in liquid layers, including water.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binnig, G., Quate, C. F., and Gerber, Ch., Phys. Rev. Lett. 56, 930933 (1986).Google Scholar
2. Giessibl, F.J., Science 267, 68 (1995).Google Scholar
3. There is a sizeable number of papers on these issues. One of the first was: Giessibl, F.J., Phys. Rev. B 56, 16010 (1997). One of the latest papers is:Google Scholar
Sader, J.E. and Jarvis, S.P., Phys.Rev. B 70, 012303 (2004).Google Scholar
4. Guggisberg, M., Bammerlin, M., Loppacher, Ch., Pfeiffer, O., Abdurixit, A., Barwich, V., Bennewitz, R., Baratoff, A., Mayer, E., and Güntherodt, H.-J., Phys. Rev. B 61, 11151 (2000).Google Scholar
5. Hoffmann, P. M., Appl. Surf. Sci. 210, 140 (2003);Google Scholar
Hoffmann, P. M., Small-amplitude atomic force microscopy, in Encyclopedia of Nanotechnology , Dekker (2004).Google Scholar
6. Jarvis, S. P., Yamada, H., Yamamoto, S.-I., Tokumoto, H., and Pethica, J. B., Nature 384, 247 (1996).Google Scholar
7. Hoffmann, P. M., Oral, A., Grimble, R. A., Ozer, H. O., Jeffery, S., and Pethica, J. B., Proc. R. Soc. Lond. A 457, 1161 (2001).Google Scholar
8. Rugar, D., Mamin, H. J., Erlandsson, R., Stern, J. E., and Terris, B. D., Rev. Sci. Instrum. 59, 2337 (1988).Google Scholar
9. Oral, A., Grimble, R. A., Özer, H. Ö., and Pethica, J. B., Rev. Sci. Instr. 74, 3656 (2003).Google Scholar
10. Pérez, R., Stich, I., Payne, M. C., and Terakura, K., Phys. Rev. B 58, 10835 (1998).Google Scholar
11. Oral, A., Grimble, R. A., Özer, H. Ö., Hoffmann, P. M., and Pethica, J. B., Appl. Phys. Lett. 79, 1915 (2001).Google Scholar
12. Hoffmann, P. M., Jeffery, S., Pethica, J. B., Özer, H. Ö., and Oral, A., Phys. Rev. Lett. 87, 265502 (2001).Google Scholar
13. Israelachvili, J. N., Intermolecular & Surface Forces, Academic Press, London, 1992.Google Scholar
14. For example: O'Shea, S. J., Welland, M. E., and Rayment, T., Appl. Phys. Lett. 60, 2356 (1992).Google Scholar
15. Jeffery, S., Hoffmann, P. M., Pethica, J. B., Ramanujan, C., Özer, H. Ö., and Oral, A., Phys. Rev. B 70, 054114 (2004).Google Scholar