Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T09:53:39.597Z Has data issue: false hasContentIssue false

The Limitations of the Constant Photocurrent Method for Determining Subgap Absorption

Published online by Cambridge University Press:  15 February 2011

P. Stradins
Affiliation:
The James Franck Institute, University of Chicago, Chicago Illinois 60637, USA
H. Fritzsche
Affiliation:
The James Franck Institute, University of Chicago, Chicago Illinois 60637, USA
M. Tran
Affiliation:
The James Franck Institute, University of Chicago, Chicago Illinois 60637, USA
Get access

Abstract

The subgap absorption αcpm measured by the constant photocurrent method (CPM) was studied between 4.2K and 300K for different dopings and defect concentrations N in hydrogenated amorphous silicon (a-Si:H). We found that αcpm is reduced by up to a factor 100 between 50K and 200K due to infrared selfquenching which changes the charge state of the defects and enhances recombination. The effect is diminished at high N and large doping. The relative change Δα/α reflects ΔN/N both at very low and high temperatures. For undoped samples αcpm is about four times larger at 4.2K than at 300K. For doped samples the two values are essentially the same.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vaneček, M., Kočka, J., Stuchlik, J. and Triška, A., Solid State Commun. 39, 1199 (1981).Google Scholar
2. Kočka, J., Vaneček, M. and Triška, A., in ‘Amorphous Silicon and Related Materials,’ ed. Fritzsche, H. (World Scientific, Singapore, 1988), p. 276.Google Scholar
3. Mettler, A., Wyrsch, N. and Shah, A., J. Non-Cryst. Solids, 164–166, 427 (1993).Google Scholar
4. Conte, G., Irrera, F., Nobile, G. and Palma, F., J. Non-Cryst. Solids, 164–166, 419 (1993).Google Scholar
5. Hattori, K., Fukuda, S., Nishimura, K., Okamoto, H. and Hamakawa, Y., J. Non-Cryst. Solids, 164–166, 351 (1993).Google Scholar
6. Platz, R., Brüggemann, R. and Bauer, G. H., J. Non-Cryst. Solids, 164–166, 355 (1993).Google Scholar
7. Siebke, F. and Stiebig, H., Mat. Res. Soc. Proc., 336, 371 (1994).Google Scholar
8. Bube, R. H., Benatar, L. E., Grimbergen, M. N. and Redfield, D., J. Appl. Phys. 72, 5766 (1992).Google Scholar
9. Tran, M., Fritzsche, H. and Stradins, P., Mat. Res. Soc. Symp. Proc. 297, 195 (1993).Google Scholar
10. Shklovskii, B. I., Levin, E. I., Fritzsche, H. and Baranovskii, S. D., in ‘Transport, Correlation and Structural Defects,’ ed. Fritzsche, H. (World Scientific, Singapore 1990) p. 161.Google Scholar
11. Stradins, P., Fritzsche, H. and Tran, M., Mat. Res. Soc. Symp. Proc. 336, 227 (1994).Google Scholar
12. Persans, P. D., Phil. Mag. B 46, 435 (1982).Google Scholar
13. Fuhs, W., J. Non-Cryst. Solids 77/78, 593 (1985).Google Scholar
14. Brandt, M. S. and Stutzmann, M., J. Non-Cryst. Solids, 164–166, 547 (1993).Google Scholar
15. Tran, M. Q., Stradins, P. and Fritzsche, H., Mat. Res. Soc. Symp. Proc. 336, 431 (1994).Google Scholar
16. Sladek, P., Theye, M. L. and Chahed, L., J. Non-Cryst. Solids, 164–166, 363 (1993).Google Scholar
17. Scholz, A., Möller, B., Schröder, B., Oechsner, H. and Freistedt, H., J. Non-Cryst. Solids, 164–166, 375 (1993).Google Scholar
18. Nonomura, S., Nishiwaki, T., and Nitta, S., Phil. Mag. B 69, 335 (1994).Google Scholar
19. Stradins, P. and Fritzsche, H., Phil. Mag. B 69, 121 (1994).Google Scholar