Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T09:49:16.905Z Has data issue: false hasContentIssue false

Lattice Defects in β-Sic Grown Epitaxially On Silicon Substrates

Published online by Cambridge University Press:  28 February 2011

P. Pirouz
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve university, Cleveland, OHIO 44106
C. M. Chorey
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve university, Cleveland, OHIO 44106
T. T. Cheng&
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve university, Cleveland, OHIO 44106
J. A. Powell
Affiliation:
NASA Lewis Research Center, Cleveland, OHIO 44135.
Get access

Abstract

Defects generated in β-SiC grown on a (001) silicon substrate by chemical vapor deposition (CVD) are charaterized and their mechanism of formation discussed. It is argued that nucleation plays a primary role in this heteroepitaxial system where the lattice mismatch is so large.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jackson, D. M. & Howard, R. W., Trans. Met. Soc. AIM 233, 468 (1965).Google Scholar
[2] Nishino, S., Powell, J. A., and Will, H. A., Appl. Phys. Lett. 42, 460 (1983).Google Scholar
[3] Pirouz, P. and Chorey, C. M., Proc. Vth Intn. Congress on Structure and Properties of Dislocations in Semiconductors, Moscow, U.S.S.R., March 17–22, 1986 (Bulletin of Academy of Sciences of U.S.S.R., In press).Google Scholar
[4] Pirouz, P., Chorey, C. M., Cheng, T. T. & Powell, J. A., Proc. Vth Oxford Conference on ‘Microscopy of Semiconducting Materials’, Oxford, England, April 5–8, 1987. Institute of Physics (In press).Google Scholar
[5] Chorey, C. M., Pirouz, P., Powell, J. A., & Mitchell, T. E., in ‘Semiconductor-Based Heterostructures: Interfacial Sttructure and Stability, ed. Green, M. L. et al. , TMS Publications (1987), p. 115.Google Scholar
[6] Nutt, S., Smith, D. J., Kim, H. & Davis, R. F., Appl. Phys. Lett. 50, 203 (1987).Google Scholar
[7] Powell, J. A., Matus, L. G. & Kuczmarski, M. A., J. Electrochem. Soc. (1987), In press.Google Scholar
[8] Powell, J. A., Matus, L. G. & Kuczmarski, M. A., Chorey, C. M., Cheng, T. T. & Pirouz, P., Submitted to Appl. Phys. Lett. (1987).Google Scholar
[9] Van der Merwe, J. H., J. Appl. Phys. 34, 123 (1962).Google Scholar
[10] Frank, F. C. & Van Der Merwe, J. H., Proc. Royal Soc. London A198, 205 (1949).Google Scholar
[11] Jacobs, M. H., Pashley, D. W. & Stowell, M. J., Phil Mag. 13, 129 (1966).Google Scholar
[12] Matthews, J. W., Phil. Mag., 4, 1017 (1959).Google Scholar
[13] Bassett, G. A., Menter, J. W. & Pashley, D. W., in ‘Sructure and Properties of Thin Films’ (New York: John Wiley & Sons, 1959), p. 12.Google Scholar
[14] Shibahara, K., Saito, T., Nishino, S. & Matsunami, H., Extended Abstracts of the 18th Intn. Conf. on Solid State Devices and Materials, Tokyo, (1986), p. 717.Google Scholar
[15] Pirouz, P., Chorey, C. M. & Powell, J. A., Appl. Phys. Lett. 50, 221 (1987).Google Scholar