Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T00:22:31.236Z Has data issue: false hasContentIssue false

Investigation of SET and RESET States Resistance in Ohmic Regime for Phase-Change Memory

Published online by Cambridge University Press:  01 February 2011

Semyon D. Savransky
Affiliation:
[email protected], Intel Corporation, R&D, 2200 Mission College Boulevard, Santa Clara, CA, 95054, United States
Ilya V Karpov
Affiliation:
[email protected], Intel Corporation, Santa Clara, CA, 94054, United States
Get access

Abstract

New technique to separate bulk and interface electrical properties of polycrystalline and glassy Ge2Sb2Te5 (GST) in phase-change memory (PCM) devices is proposed. PCM with different GST thicknesses are measured. The average activation energies for bulk conductivity are 0.37 eV and 0.09 eV as well as bulk resistivities are about μOhm*cm2 and 20 μOhm*cm. The contact barriers is 0.07eV and specific contact resistance is about 0.3 μOhm*cm2 in studied PCM devices.

It is discovered that bulk resistivities for both SET and RESET states in PCM obey Meyer-Neldel rule with almost identical isokinetic temperatures 335K − 340K. This information is discussed in terms of GST structure.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wuttig, M. and Yamada, N. Nature Materials 6, 824 (2007).Google Scholar
2. Coombs, J. H. Jongenelis, A. P. J. M., Es-Spiekman, W. van, and Jacobs, B. A. J., J. Appl. Phys. 78, 4906 (1995).Google Scholar
3. Jeon, C. W.., Kang, D.H. Ha, D.W., Song, Y.J., Oh, J.H. Kong, J.H. Yoo, J.H. Park, J.H. Ryoo, K.C., Lim, D.W. Park, S.S. Kim, J.I. Oh, Y.T. Kim, J.S. Shin, J.M. Park, J. Fai, Y. Koh, G.H. Jeong, G.T. Jeong, H.S. Kim, K. Solid State Electronics 52, 591 (2008).Google Scholar
4. Kencke, D. Karpov, I. Johnson, B. Lee, S. Kau, D. Hudgens, S. Reifenberg, J. Savransky, S. Zhang, J., Giles, M. and Spadini, G. Proc. IEDM 323 (2007).Google Scholar
5. Shockley, W. Report No. Al-TOR-64–207, 1964 Google Scholar
6. Kato, T. and Tanaka, K. Japan. J. Appl. Phys. 44, 7340 (2005).Google Scholar
7. Lee, B.-S. Abelson, J.R. Bishop, S.G. Kang, D.-H., Cheong, B. and Kim, K.-B., J. Appl. Phys. 97, 093509 (2005).Google Scholar
8. Anderson, P. W. Phys. Rev. Lett. 34, 953 (1975).Google Scholar
9. Klinger, M. I. Physics Rep. 165, 275 (1988)Google Scholar
10. Olson, J. K. Li, Heng, Ju, T. Viner, J. M. and Taylor, P. C. J. Appl. Phys. 99, 103508 (2006)Google Scholar
11. Karpov, I. Savransky, S. and Karpov, V. Proc. IEEE NVSMW-07 56 (2007).Google Scholar
12. Meyer, W. and Neldel, H. Z. Tech. Phys. (Leipzig) 12, 588 (1937).Google Scholar
13. Yelon, A. Movaghar, B. and Crandall, R.S. Rep. Prog. Phys. 69, 1145 (2006)Google Scholar