Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T08:07:59.420Z Has data issue: false hasContentIssue false

Interdiffusion and Stress Evolution During Solid-State Amorphization in Ni-Hf Thin-Film Diffusion Couples

Published online by Cambridge University Press:  15 February 2011

M. Atzmon
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-2104
W. S. L. Boyer
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, Ann Arbor, MI 48109-2104
Get access

Abstract

Using a combination of x-ray diffraction and curvature measurements, the stress evolution during solid-state amorphization in a Ni-Hf diffusion couple has been monitored. In contrast to the Co-Hf system, no dissolution of Ni in Hf is observed. During interdiffusion, the growing amorphous layer develops a large tensile stress, which subsequently relaxes by creep. Irradiation of the diffusion couple leads to an increase in tensile stress, and a further increase following a subsequent anneal. Composition measurements by Rutherford backscattering spectrometry indicate absence of an effect of the stress variations on the effective interdiffusion coefficient.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
2. Johnson, W. L., Progress in Mat Sci. 30,81 (1986).Google Scholar
3. Van Rossum, M., Nicolet, M.-A., and Johnson, W. L., Phys. Rev. B29, 5498 (1984).Google Scholar
4. Aaen Andersen, L.-U., Bottiger, J., Karpe, N., Larsen, K. K., Greer, A. L., and Soraekh, R. E., Mat. Sc. Eng. A133,415 (1991).Google Scholar
5. Unruh, K. M., Meng, W. J., Johnson, W. L., Thaakoor, A. P., and Khanna, S. K., Mat. Res. Soc. Symp. Proc. 37, 551 (Boston, 1984).Google Scholar
6. Bauad, P. P., d'eurle, F. M. and Irene, E. A., I. Vac. Sci. Tech. B11, 304 (1993).Google Scholar
7. Johnson, W. C. and Martin, G., J. Appl. Phys. 68, 1252 (1990).Google Scholar
8. Boyer, W. S. L. and Atzmon, M., Diff. and Defect Data, in press.Google Scholar
9. Doerner, M. F. and Nix, W. D., CRC Critical Reviews in Solid State and Materials Science 14, 225 (1988).Google Scholar
10. Hoffman, R. W., in The Physics of Thin Films, vol. 3, eds. Hass, G. and Thun, R. E. (Academic Press, New York 1966), p. 211.Google Scholar
11. Noyan, I. C. and Cohen, J. B., Residual Stress Measurement by Diffraction and Interpretation (Springer Verlag, New York 1987).Google Scholar
12. Moske, M. and Samwer, K., Thin Films: Stresses and Mechanical Properties V, eds. Baker, S. P., Borgesen, P., Townsend, P. H. and Ross, C. A. (Materials Research Society, Pittsburgh 1995).Google Scholar
13. Hollanders, M., Thysse, B. J. and Mittemeijer, E. J., Phys. Rev. B44, 1184 (1991).Google Scholar
14. Boyer, W. S. L. and Atzmon, M., to be published.Google Scholar
15. Doolittle, L. R., Nucl. Instr. Meth. B9, 344 (1985), and 15, 227 (1986).Google Scholar
16. Pampus, K., Bottinger, J., Torp, B., Schroder, H., and Samwer, K., Phys. Rev. B35,7010 (1987).Google Scholar
17. Witvrouw, A., Volkert, C. A. and Spaepen, F., Mater. Sci. Eng. A134, 1274 (1991).Google Scholar
18. Russew, K., Sommer, F., Duhaj, P. and Bakonyi, I., J. Mater. Sci. 27, 3565 (1992).Google Scholar