Published online by Cambridge University Press: 10 February 2011
Material integration for the formation of advanced silicon-on-insulator materials by wafer bonding and etch-back will be discussed. Wafer bonding allows combining materials that may not be possible to grow on top of each other by any other technique. In our experiments, polycrystalline diamond, aluminum nitride or aluminum oxide films with thickness of 0.1-5 µm were deposited on silicon wafers. Bonding experiments were made with these films to bare silicon wafers with the goal of forming silicon-on-insulator structures with buried films of polycrystalline diamond, aluminum nitride or aluminum oxide. These silicon-on-insulator structures were aimed to address self-heating effects in conventional silicon-on-insulator materials with buried layers of silicon dioxide. The surfaces of the deposited diamond films were, by order of magnitude, too rough to allow direct bonding to a silicon wafer. In contrast the deposited aluminum nitride and aluminum oxide films did allow direct bonding to silicon. Bonding of the diamond surface to silicon was instead made through a deposited and polished layer of polycrystalline silicon on top of the diamond. In the case of the aluminum nitride electrostatic bonding was also demonstrated. Further, the compatibility of these insulators to silicon process technology was investigated.