Published online by Cambridge University Press: 01 February 2011
We investigated the synthesis of bismuth oxy-iodide and iodate compounds, in an effort to develop materials for iodine recovery from caustic waste streams and/or final waste disposal if repository conditions included ambient conditions similar to those under which the iodine was initially captured. The results presented involve the in-situ crystallization of layered bismuth oxide compounds with aqueous dissolved iodine (which resides as both iodide and iodate in solution). Although single-phase bismuth oxy-iodide materials have already been described in the context of capturing radioiodine, our unique contribution is the discovery that there is a mixture of Bi-O-I compositions, not described in the prior work, which optimize both the uptake and the degree of insolubility (and leachability) of iodine. The optimized combination produces a durable material that is suitable as a waste form for repository conditions such as are predicted at the Yucca Mountain repository (YMP) or in a similar type of repository that could be developed in coordination with iodine production via Global Nuclear Energy Program (GNEP) production cycles.