Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T14:13:51.859Z Has data issue: false hasContentIssue false

In-plane Structure and Polymorphism of Pentacene Thin Films

Published online by Cambridge University Press:  26 February 2011

Toshiyuki Kakudate
Affiliation:
[email protected], Iwate Univ., Materials Science, 4-3-5 Ueda, Morioka, 020-8551, Japan
Noriyuki Yoshimoto
Affiliation:
[email protected], Iwate University, Morioka, 020-8551, Japan
Yoshio Saito
Affiliation:
[email protected], Kyoto Institute of Technology, Kyoto, 606-8585, Japan
Get access

Abstract

The structure and polymorphism of pentacene thin films on SiO2 substrate were investigated by grazing incidence x-ray diffractometry (GIXD). The in-plane GIXD patterns were successfully obtained from vacuum deposited ultra-thin films of a few monolayers thick. The two-dimensional lattice constants were determined for both thin-film and bulk phases from the observed GIXD patterns. Considering the obtained unit cell parameters, the mechanism of the transformation between polymorphs was discussed using the classical nucleation theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimitrakopouls, C. D. and Malefant, P. R. L., Adv. Matter. 14 (2002) 99.Google Scholar
2. Kelly, T. W., Boardman, L. D., Dunbar, T. D., Muyres, D. V., Pellerite, M. J. and Smith, T. P., J. Phys. Chem. B 107 (2003) 5877.Google Scholar
3. Lin, Y. Y., Gundiach, D.J., Nelson, S. F. and Jackson, T. N., IEEE Electron Device Lett. 18 (1997) 606.Google Scholar
4. Karl, N., Synth. Met. 133 (2003) 649.Google Scholar
5. Singh, Th. B., Meghdadi, F., Günes, S., Marjanovic, N., Horowitz, G., Lang, P., Bauer, S. and Sariciftci, N. S., Adv. Mater 17 (2005) 2315.Google Scholar
6. Matheus, C. C., Dros, A. B., Baas, J., Meetsma, A., Boer, J. L. de and Palstra, T. T. M., Acta. Crystallogr. C 57 (2001) 939.Google Scholar
7. Campbell, R. B., Robertson, J. M. and Trotter, J., Acta. Crystallogr. 14 (1961) 705; 15 (1962) 289.Google Scholar
8. Wu, J. S. and Spence, J. C. H., J. Appl. Crystallogr. 37 (2004) 78.Google Scholar
9. Mattheus, C. C., Dros, A. B., Baas, J., Oostergetel, G. T., Meetsma, A., Boer, J. L. de and Palstra, T. T.M., Synth. Met. 138 (2003) 475.Google Scholar
10. Bouchoms, I. P. M., Schoonveld, W. A., Vrijmoeth, J. and Klapwijk, T. M., Synth. Met. 104 (1999) 175.Google Scholar
11. Cornil, J., Calbert, J. Ph. and Bredas, J. L., J. Am. Chem. Soc. 123 (2001) 1250.Google Scholar
12. Cheng, Y. C., Silbey, R. J., Filho, D. A. da Silva, Calbert, J. P., Cornil, J. and Bredas, J. L., J. Chem. Phys. 118 (2003) 3764.Google Scholar
13. Northrup, J. E., Tiago, M. L. and Louie, S. G., Phys. Rev. B 66 (2002) 121404.Google Scholar
14. Takahashi, S., Taniguchi, M., Omote, K., Wakabayashi, N., Tanaka, R. and Yamaguchi, A., Chem. Phys. Lett. 352 (2002) 213.Google Scholar
15. Fritz, S. E., Martin, S. M., Frisbie, C. D., Ward, M. D. and Toney, M. F., J. Am. Chem. Soc. 126 (2004) 4084.Google Scholar
16. Yoshida, H. and Sato, N., Appl. Phys. Lett. 89 (2006) 101919.Google Scholar
17. Hoshino, A., Isoda, S., Kurata, H. and Kobayasih, T., J. Appl. Phys. 76 (1994) 4113.Google Scholar
18. Mutaftschiev, B., in Handbook of Crystal Growth 1, edited by Hurle, D. T. J. (Elsevier Science B. V., North-Holland, 1993), p. 187.Google Scholar