Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T14:02:21.299Z Has data issue: false hasContentIssue false

Influence of proton irradiation and development of flexible CdTe solar cells on polyimide

Published online by Cambridge University Press:  21 March 2011

A. Romeo
Affiliation:
Thin Films Physics Group, Laboratory for Solid State Physics, ETHZ (Swiss Federal Institute of Technology Zurich), Technopark, ETH-Building, Technoparkstr.1, CH-8005 Zurich, Tel: +41-1-4451474, Fax: +41-1-4451499
D.L. Bätzner
Affiliation:
Thin Films Physics Group, Laboratory for Solid State Physics, ETHZ (Swiss Federal Institute of Technology Zurich), Technopark, ETH-Building, Technoparkstr.1, CH-8005 Zurich, Tel: +41-1-4451474, Fax: +41-1-4451499
H. Zogg
Affiliation:
Thin Films Physics Group, Laboratory for Solid State Physics, ETHZ (Swiss Federal Institute of Technology Zurich), Technopark, ETH-Building, Technoparkstr.1, CH-8005 Zurich, Tel: +41-1-4451474, Fax: +41-1-4451499
A.N. Tiwari
Affiliation:
Thin Films Physics Group, Laboratory for Solid State Physics, ETHZ (Swiss Federal Institute of Technology Zurich), Technopark, ETH-Building, Technoparkstr.1, CH-8005 Zurich Tel: +41-1-4451474, Fax: +41-1-4451499, E-mail: [email protected]
Get access

Abstract

CdTe/CdS solar cells of ∼10% efficiency, developed with a vacuum deposition method were irradiated with high-energy protons of different fluences. The Voc and f.f. of irradiated cells increase or decrease depending on the fluence. The normal soda lime glass substrate darkens under the irradiation; therefore low Isc is measured. Measurements suggest that CdTe solar cells are highly stable under proton flux. Flexible and lightweight solar cells were developed in a superstrate configuration on polymer substrates. 8.6 % efficiency cells with Voc∼770 mV and Isc of 20.3 mA/cm2 were achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schock, H.W. and Bogus, K., Proc. 2nd World PVSEC, 3586 (1998).Google Scholar
2. Jasenek, A., Hahn, T., Schmidt, M., Weinert, K., Wimbor, M., Hanna, G., Orgassa, K., Hartmann, M., Schock, H.W., Rau, U., Werner, J.H., Schattat, B., Kraft, S., Schmid, K.H., Bolse, W., Roche, G. La, Robben, A., Bogus, K, Proc.16th Euro PVSEC, 982 (2000).Google Scholar
3. Burgess, R.M, Chen, W.S., Devaney, W.E., Doyle, D.H., Kim, N. P., Stanbery, B.J., 25 IEEE PSC, 909 (1996).Google Scholar
4. Britt, J. and Ferekides, C., Appl. Phys. Lett. 62, 2851 (1993).Google Scholar
5. Aramato, T., Kumazawa, S., Higuchi, H., Arita, T., Shibutani, S., Nishio, T., Nakajima, J., Tsuji, M., Hanafusa, A., Hibino, T., Omura, K., Ohyama, H., and Murozono, M., J. J. Appl. Phys. Part 1, 36, 6304 (1997).Google Scholar
6. Romeo, A., Bätzner, D.L., Zogg, H, Tiwari, A.N., Proc.16th Euro PVSEC, 843 (2000).Google Scholar
7. Basol, B.M., Kapur, V.K., Leidholm, C.R., and Halani, A., 25 IEEE PSC, 157 (1996).Google Scholar
8. Tiwari, A.N., Krejci, M., Haug, F.-J., Zogg, H., Prog. PV; Res. App., 7, 393 (1999).Google Scholar
9. Wang, W., wang, X., Thompson, G., McClure, J. C., and Singh, V. P., Proc. 2nd World PVSEC, 1055 (1998).Google Scholar
10. Seth, A., Lush, G.B., McClure, J.C., singh, V.P., and Flood, D., Sol. En. Mat. Sol. Cells, 59, 35 (1999).Google Scholar
11. Summers, G.P., Messenger, S.R., Burke, E.A., Xapsos, M. A. and Walters, R.J., IEEE Transactions on Nuclear Science, Vol. 40, 6, 1372 (1996).Google Scholar
12. Romeo, A., Tiwari, A. N., and Zogg, H., Proc. 2nd World PVSEC, 1105 (1998).Google Scholar
13. Romeo, A., Bätzner, D.L., Zogg, H. and Tiwari, A.N. 17th Euro PVSEC, 2001 to be published.Google Scholar