Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:54:53.603Z Has data issue: false hasContentIssue false

HVPE and MOVPE GaN Growth on Slightly Misoriented Sapphire Substrates

Published online by Cambridge University Press:  03 September 2012

Olivier Parillaud
Affiliation:
Institut de Micro- et Optoélectronique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Volker Wagner
Affiliation:
Institut de Micro- et Optoélectronique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Hans-Jörg Bühlmann
Affiliation:
Institut de Micro- et Optoélectronique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
François Lelarge
Affiliation:
Institut de Micro- et Optoélectronique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Marc Ilegems
Affiliation:
Institut de Micro- et Optoélectronique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Get access

Abstract

We present preliminary results on gallium nitride growth by HVPE on C-plane sapphire with 2, 4 and 6 degrees misorientation towards M and A directions. A nucleation GaN buffer layer is deposited prior the growth by MOVPE. Surface morphology and growth rates are compared with those obtained on exact C-plane oriented sapphire, for various growth conditions. As expected, the steps already present on the substrate surface help to initiate a directed step-flow growth mode. The large hillocks, which are typical for HVPE GaN layers on (0001) sapphire planes, are replaced by more or less parallel macro-steps. The width and height of these steps, due to step bunching effect, depend directly on the angle of misorientation and on the growth conditions, and are clearly visible by optical or scanning electron microscopy. Atomic force microscopy and X-ray diffraction measurements have been carried out to quantify the surface roughness and crystal quality.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Isawa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys., Part 2 35, L74 (1996).Google Scholar
2. Hiramatsu, K., Amano, H., Asaki, I., Kato, H., Koide, N., and Manabe, K., J. Crystal Growth 107, 509512 (1991).Google Scholar
3. Grudowski, P. A., Holmes, A. L., Eiting, C. J., and Dupuis, R. D., Appl. Phys. Lett. 69 (24) (1996).Google Scholar
4. Pecz, B., Forte-Poisson, M. A. di, Huet, F., Radnoczi, G., Toh, L., Papaioannou, V., and Stoemenos, J., J. Appl. Phys. 86, 11 (1999).Google Scholar
5. Seifert, W., Fitzl, G., and Butter, E., J. Crystal Growth 52, 257262 (1981).Google Scholar
6. Burton, W. K., Cabrera, N., and Frank, F. C., Phil. Trans. Roy. Soc. 299 (1951).Google Scholar
7. Parillaud, O., Wagner, V., Bühlmann, H. J., and Ilegems, M., MRS Internet J. Nitride Semicond. Res. 3, 40 (1998).Google Scholar
8. Naniwae, K., Itoh, S., Amano, H., Itoh, K., Hiramatsu, K., and Agasaki, I., J. Crystal Growth 99, 381384 (1990).Google Scholar
9. Detchprohm, T., Hiramatsu, K., Itoh, K., and Agasaki, I., Appl. Phys. Lett., 61 (22) (1992).Google Scholar
10. Molnar, R. J., Nichols, K. B., Malki, P., Brown, E. R. and Melngailis, I, Mat. Res. Soc. Proc. Vol. 378, 242244 (1996).Google Scholar
11. Wagner, V., Parillaud, O., Bühlmann, H. J., and Ilegems, M., Phys. Stat. Sol. (a) 176, 429 (1999).Google Scholar