No CrossRef data available.
Article contents
Hrem Studies of Rapidly Solidified Ni-Fe-Al-B Shape Memory Alloys.
Published online by Cambridge University Press: 25 February 2011
Abstract
A series of (NixFeyAlz)0.9983B0.0017 (where x=58-60, y=13-15 and z=26-28, in at%) alloys have been rapidly solidified by - melt spinning. The ribbons have been characterized by HREM, DSC, X-ray diffraction and recoverable strain measurements. The as-cast alloys exhibit excellent bend ductility (in contrast to B2 type alloys conventionally cast) and a wide range of transformation temperatures: Ms=244-466 K, Mf=200-395K, As=236-427K and Af=262-526K. X-ray diffraction shows the presence of β (NiAl), β′ (NiAl), γ (Ni3Al), γ′ (Ni3A1), Ni and other phases such as Fe3Al, FeAl, FeNi and Al5Fe2. It is the β- β′ diffusionless transformation which is responsible for the shape memory effect. The results obtained by transmission electron microscopy (TEM) show two different types of crystalline grains. In one case, the grains have a high density of twins which are the fingerprints of the martensite transformation. However, other areas in the specimen show crystalline grains with very poor image contrast due to the transformation from β′ -β. There are also sections in the specimens with domains of both crystalline sgrains in coexistance. Both crystalline grains have large amounts of precipitates. In the β′ (NiAl) phase the size of the precipitates range fron lnm to lOnm. In the γ (Ni3Al) phase large precipitates (20nm) can be found. Some of them display pentagonal shapes which resemble the image contrast obtained in the TEM for small icosahedral metallic particles. Experimental evidence is also obtained on different habit or twin planes. HREM images from the twinned areas suggest diferent kinds of atomic structures for the parent and martensite crystalline sections. These results give some insights into the nature of the martensite transformation.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992